题名 | Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence |
作者 | |
通讯作者 | Wang, Jianchun; Li, Xinliang |
发表日期 | 2021-12-03
|
DOI | |
发表期刊 | |
ISSN | 0022-1120
|
EISSN | 1469-7645
|
卷号 | 932 |
摘要 | Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature-velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key Research and Development Program of China["2020YFA0711800","2019YFA0405302"]
; NSFC[12072349,91852203,91952104]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000725678300001
|
出版者 | |
EI入藏号 | 20215111355359
|
EI主题词 | Atmospheric thermodynamics
; Boundary layer flow
; Boundary layers
; Channel flow
; Forecasting
; Friction
; Kinetics
; Large eddy simulation
; Neural networks
; Reynolds number
; Turbulence models
; Turbulent flow
|
EI分类号 | Atmospheric Properties:443.1
; Fluid Flow:631
; Fluid Flow, General:631.1
; Thermodynamics:641.1
; Mathematics:921
; Classical Physics; Quantum Theory; Relativity:931
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85121205797
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/258059 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Chinese Acad Sci, Inst Mech, ILHD, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China 3.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China 4.Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China |
通讯作者单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Yu, Changping,Yuan, Zelong,Qi, Han,et al. Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence[J]. JOURNAL OF FLUID MECHANICS,2021,932.
|
APA |
Yu, Changping,Yuan, Zelong,Qi, Han,Wang, Jianchun,Li, Xinliang,&Chen, Shiyi.(2021).Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence.JOURNAL OF FLUID MECHANICS,932.
|
MLA |
Yu, Changping,et al."Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence".JOURNAL OF FLUID MECHANICS 932(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论