中文版 | English
题名

Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence

作者
通讯作者Wang, Jianchun; Li, Xinliang
发表日期
2021-12-03
DOI
发表期刊
ISSN
0022-1120
EISSN
1469-7645
卷号932
摘要
Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature-velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key Research and Development Program of China["2020YFA0711800","2019YFA0405302"] ; NSFC[12072349,91852203,91952104]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000725678300001
出版者
EI入藏号
20215111355359
EI主题词
Atmospheric thermodynamics ; Boundary layer flow ; Boundary layers ; Channel flow ; Forecasting ; Friction ; Kinetics ; Large eddy simulation ; Neural networks ; Reynolds number ; Turbulence models ; Turbulent flow
EI分类号
Atmospheric Properties:443.1 ; Fluid Flow:631 ; Fluid Flow, General:631.1 ; Thermodynamics:641.1 ; Mathematics:921 ; Classical Physics; Quantum Theory; Relativity:931
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85121205797
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258059
专题工学院_力学与航空航天工程系
作者单位
1.Chinese Acad Sci, Inst Mech, ILHD, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
3.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
4.Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
通讯作者单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Yu, Changping,Yuan, Zelong,Qi, Han,et al. Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence[J]. JOURNAL OF FLUID MECHANICS,2021,932.
APA
Yu, Changping,Yuan, Zelong,Qi, Han,Wang, Jianchun,Li, Xinliang,&Chen, Shiyi.(2021).Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence.JOURNAL OF FLUID MECHANICS,932.
MLA
Yu, Changping,et al."Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence".JOURNAL OF FLUID MECHANICS 932(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu, Changping]的文章
[Yuan, Zelong]的文章
[Qi, Han]的文章
百度学术
百度学术中相似的文章
[Yu, Changping]的文章
[Yuan, Zelong]的文章
[Qi, Han]的文章
必应学术
必应学术中相似的文章
[Yu, Changping]的文章
[Yuan, Zelong]的文章
[Qi, Han]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。