中文版 | English
题名

Deep Learning-Based Maritime Environment Segmentation for Unmanned Surface Vehicles Using Superpixel Algorithms

作者
通讯作者Liu, Yuanchang
发表日期
2021-12-01
DOI
发表期刊
EISSN
2077-1312
卷号9期号:12
摘要
Unmanned surface vehicles (USVs) are receiving increasing attention in recent years from both academia and industry. To make a high-level autonomy for USVs, the environment situational awareness is a key capability. However, due to the richness of the features in marine environments, as well as the complexity of the environment influenced by sun glare and sea fog, the development of a reliable situational awareness system remains a challenging problem that requires further studies. This paper, therefore, proposes a new deep semantic segmentation model together with a Simple Linear Iterative Clustering (SLIC) algorithm, for an accurate perception for various maritime environments. More specifically, powered by the SLIC algorithm, the new segmentation model can achieve refined results around obstacle edges and improved accuracy for water surface obstacle segmentation. The overall structure of the new model employs an encoder-decoder layout, and a superpixel refinement is embedded before final outputs. Three publicly available maritime image datasets are used in this paper to train and validate the segmentation model. The final output demonstrates that the proposed model can provide accurate results for obstacle segmentation.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Royal Society[IEC-NSFC-191633]
WOS研究方向
Engineering ; Oceanography
WOS类目
Engineering, Marine ; Engineering, Ocean ; Oceanography
WOS记录号
WOS:000738088300001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258138
专题工学院_电子与电气工程系
作者单位
1.UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England
2.UCL, Dept Civil Environm & Geomat Engn, Chadwick Bldg, London WC1E 6BT, England
3.Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
4.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
5.Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
6.Dalian Univ Technol, Sch Mech Engn, Key Lab Micro Nano Technol & Syst Liaoning Prov, Dalian 116024, Peoples R China
推荐引用方式
GB/T 7714
Xue, Haolin,Chen, Xiang,Zhang, Ruo,et al. Deep Learning-Based Maritime Environment Segmentation for Unmanned Surface Vehicles Using Superpixel Algorithms[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2021,9(12).
APA
Xue, Haolin,Chen, Xiang,Zhang, Ruo,Wu, Peng,Li, Xudong,&Liu, Yuanchang.(2021).Deep Learning-Based Maritime Environment Segmentation for Unmanned Surface Vehicles Using Superpixel Algorithms.JOURNAL OF MARINE SCIENCE AND ENGINEERING,9(12).
MLA
Xue, Haolin,et al."Deep Learning-Based Maritime Environment Segmentation for Unmanned Surface Vehicles Using Superpixel Algorithms".JOURNAL OF MARINE SCIENCE AND ENGINEERING 9.12(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xue, Haolin]的文章
[Chen, Xiang]的文章
[Zhang, Ruo]的文章
百度学术
百度学术中相似的文章
[Xue, Haolin]的文章
[Chen, Xiang]的文章
[Zhang, Ruo]的文章
必应学术
必应学术中相似的文章
[Xue, Haolin]的文章
[Chen, Xiang]的文章
[Zhang, Ruo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。