中文版 | English
题名

Convolutional Neural Network, Res-Unet++, -Based Dispersion Curve Picking From Noise Cross-Correlations

作者
通讯作者Chen,Xiaofei
发表日期
2021-11-01
DOI
发表期刊
ISSN
2169-9313
EISSN
2169-9356
卷号126期号:11
摘要
Ambient seismic noise cross-correlation has been widely applied in surface wave tomography at regional to global scales, including for seismic exploration of near-surface structures. Reliable seismic imaging requires the accurate selection of dispersion curves. However, manual picking has become cumbersome work with the increase in available correlation traces; it is even more difficult when the number of dispersion curves increases by using frequency-Bessel (F-J) transform. Here, we show that the neural network Res-Unet++ can automatically and accurately extract both fundamental dispersion curves and overtones from the F-J dispersion spectra after training the network. Results show that selected dispersion curves had high accuracies in the synthetic data (greater than 95%). The network could effectively extract both the fundamental and higher modes in real data, and transfer learning improved the adaptability of neural networks for different geological areas. The obtained dispersion curves from the real data agreed well with those acquired manually and were advantageous for generating more effective dispersion points.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology[ZDSYS20190902093007855] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0203] ; Shenzhen Science and Technology Program[KQTD20170810111725321] ; National Natural Science Foundation of China["U1901602",41790465] ; leading talents of Guangdong province program[2016LJ06N652]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000723102600032
出版者
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85119834040
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258156
专题理学院_地球与空间科学系
作者单位
1.Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology,Southern University of Science and Technology,Shenzhen,China
2.Department of the Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,China
3.Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou,China
4.School of the Earth and Space Sciences,University of Sciences and Technology of China,Hefei,China
5.Center of AI and Intelligent Operation,China Mobile Communications Research Institute,Beijing,China
第一作者单位南方科技大学;  地球与空间科学系
通讯作者单位南方科技大学;  地球与空间科学系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Song,Weibin,Feng,Xuping,Wu,Gaoxiong,et al. Convolutional Neural Network, Res-Unet++, -Based Dispersion Curve Picking From Noise Cross-Correlations[J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,2021,126(11).
APA
Song,Weibin,Feng,Xuping,Wu,Gaoxiong,Zhang,Gongheng,Liu,Ying,&Chen,Xiaofei.(2021).Convolutional Neural Network, Res-Unet++, -Based Dispersion Curve Picking From Noise Cross-Correlations.JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH,126(11).
MLA
Song,Weibin,et al."Convolutional Neural Network, Res-Unet++, -Based Dispersion Curve Picking From Noise Cross-Correlations".JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH 126.11(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song,Weibin]的文章
[Feng,Xuping]的文章
[Wu,Gaoxiong]的文章
百度学术
百度学术中相似的文章
[Song,Weibin]的文章
[Feng,Xuping]的文章
[Wu,Gaoxiong]的文章
必应学术
必应学术中相似的文章
[Song,Weibin]的文章
[Feng,Xuping]的文章
[Wu,Gaoxiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。