题名 | Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations |
作者 | |
通讯作者 | Cheng, Tianhai; Li, Ying |
发表日期 | 2019-06
|
DOI | |
发表期刊 | |
ISSN | 0034-4257
|
EISSN | 1879-0704
|
卷号 | 226页码:93-108 |
摘要 | As an important part of the anthropogenic aerosol, Black Carbon (BC) aerosols in the atmospheric environment have strong impacts on climate change. Recently, most remote sensing studies on aerosol components detection are limited to the inversion of aerosol optical properties, integration of chemistry models or in situ observations. In this paper, an algorithm based on Effective Medium Approximations (EMA) and statistically optimized aerosol inversion algorithm was integrated for retrieving the surface mass concentration of BC aerosols from satellite signals. The sensitivity analyses for the developed forward model proved that the volume fraction of vertical BC is sensitive to the satellite observations and significantly improved especially over bright surface targets or under polluted atmospheric conditions. By updating the forward model and retrieved parameters of the statistically optimized inversion algorithm, three cases of high aerosol loading days were retrieved from Polarization and Anisotropy of Reflectance for Atmospheric Sciences Coupled with Observations from a LiDAR (PARASOL) measurements, which shows a significant ability of BC aerosol detection. Additionally, the validation and closure studies of BC concentration retrievals also indicates an encouraging consistency with correlation (R) of 0.71, mean bias of 3.55, and root-mean-square error (RMSE) of 3.75 when compared against the in-situ observations over South Asia. The accuracy of the retrievals also demonstrates different trends under different levels of aerosol loadings, which shows a higher accuracy in biomass burning seasons (R = 0.75, RMSE = 4.04, Bias = 3.27) while exaggerates the results in the case of clear conditions (R = 0.47, RMSE = 4.83, Bias = 4.00). Finally, the uncertainties of three assumptions, including proposing uniform vertical profile for BC, neglecting light-absorbing aerosols and using spherical EMA models were discussed in our manuscript. The maximum standard deviations caused by these uncertainties on low BC aerosol volume fractions (f(BC) < 1%) are 0.8%, 0.35% and 0.2% while these deviations will change to 0.25%, 0.05% and 1.5% respectively under higher BC fractions (f(BC) > 5%). This conclusion confirmed that the proposed algorithm for BC surface concentration retrieval extends the application of satellite remote sensing in monitoring the extreme biomass burning pollution. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Science and Technology Planning Project of Guangdong Province of China[2017A050506003]
|
WOS研究方向 | Environmental Sciences & Ecology
; Remote Sensing
; Imaging Science & Photographic Technology
|
WOS类目 | Environmental Sciences
; Remote Sensing
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000468256800007
|
出版者 | |
EI入藏号 | 20191406729388
|
EI主题词 | Aerosols
; Air pollution
; Approximation algorithms
; Atmospheric chemistry
; Carbon
; Climate change
; Fog
; Mean square error
; Optical properties
; Optical radar
; Pollution
; Satellites
; Sensitivity analysis
; Volume fraction
|
EI分类号 | Atmospheric Properties:443.1
; Air Pollution:451
; Thermodynamics:641.1
; Satellites:655.2
; Light/Optics:741.1
; Optical Devices and Systems:741.3
; Chemical Products Generally:804
; Mathematics:921
; Mathematical Statistics:922.2
|
ESI学科分类 | GEOSCIENCES
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:21
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25820 |
专题 | 工学院_海洋科学与工程系 理学院_地球与空间科学系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen, Peoples R China 2.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China 3.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing, Peoples R China 4.Univ Sci & Technol China, Sch Earth & Space Sci, Hefei, Anhui, Peoples R China |
第一作者单位 | 海洋科学与工程系; 地球与空间科学系 |
通讯作者单位 | 海洋科学与工程系 |
第一作者的第一单位 | 海洋科学与工程系 |
推荐引用方式 GB/T 7714 |
Bao, Fangwen,Cheng, Tianhai,Li, Ying,et al. Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations[J]. REMOTE SENSING OF ENVIRONMENT,2019,226:93-108.
|
APA |
Bao, Fangwen.,Cheng, Tianhai.,Li, Ying.,Gu, Xingfa.,Guo, Hong.,...&Gao, Jinhui.(2019).Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations.REMOTE SENSING OF ENVIRONMENT,226,93-108.
|
MLA |
Bao, Fangwen,et al."Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations".REMOTE SENSING OF ENVIRONMENT 226(2019):93-108.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Bao-2019-Retrieval o(6026KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论