中文版 | English
题名

Challenges and future directions of secure federated learning: a survey

作者
通讯作者Song, Xuan; Yu, Shui
发表日期
2022-10-01
DOI
发表期刊
ISSN
2095-2228
EISSN
2095-2236
卷号16期号:5
摘要
Federated learning came into being with the increasing concern of privacy security, as people's sensitive information is being exposed under the era of big data. It is an algorithm that does not collect users' raw data, but aggregates model parameters from each client and therefore protects user's privacy. Nonetheless, due to the inherent distributed nature of federated learning, it is more vulnerable under attacks since users may upload malicious data to break down the federated learning server. In addition, some recent studies have shown that attackers can recover information merely from parameters. Hence, there is still lots of room to improve the current federated learning frameworks. In this survey, we give a brief review of the state-of-the-art federated learning techniques and detailedly discuss the improvement of federated learning. Several open issues and existing solutions in federated learning are discussed. We also point out the future research directions of federated learning.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000729093400001
出版者
EI入藏号
20215011326391
EI主题词
Data privacy
Scopus记录号
2-s2.0-85120989981
来源库
Web of Science
引用统计
被引频次[WOS]:62
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258529
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, SUSTech UTokyo Joint Res Ctr Super Smart City, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Kaiyue,Song, Xuan,Zhang, Chenhan,et al. Challenges and future directions of secure federated learning: a survey[J]. Frontiers of Computer Science,2022,16(5).
APA
Zhang, Kaiyue,Song, Xuan,Zhang, Chenhan,&Yu, Shui.(2022).Challenges and future directions of secure federated learning: a survey.Frontiers of Computer Science,16(5).
MLA
Zhang, Kaiyue,et al."Challenges and future directions of secure federated learning: a survey".Frontiers of Computer Science 16.5(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Kaiyue]的文章
[Song, Xuan]的文章
[Zhang, Chenhan]的文章
百度学术
百度学术中相似的文章
[Zhang, Kaiyue]的文章
[Song, Xuan]的文章
[Zhang, Chenhan]的文章
必应学术
必应学术中相似的文章
[Zhang, Kaiyue]的文章
[Song, Xuan]的文章
[Zhang, Chenhan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。