题名 | Challenges and future directions of secure federated learning: a survey |
作者 | |
通讯作者 | Song, Xuan; Yu, Shui |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
ISSN | 2095-2228
|
EISSN | 2095-2236
|
卷号 | 16期号:5 |
摘要 | Federated learning came into being with the increasing concern of privacy security, as people's sensitive information is being exposed under the era of big data. It is an algorithm that does not collect users' raw data, but aggregates model parameters from each client and therefore protects user's privacy. Nonetheless, due to the inherent distributed nature of federated learning, it is more vulnerable under attacks since users may upload malicious data to break down the federated learning server. In addition, some recent studies have shown that attackers can recover information merely from parameters. Hence, there is still lots of room to improve the current federated learning frameworks. In this survey, we give a brief review of the state-of-the-art federated learning techniques and detailedly discuss the improvement of federated learning. Several open issues and existing solutions in federated learning are discussed. We also point out the future research directions of federated learning. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000729093400001
|
出版者 | |
EI入藏号 | 20215011326391
|
EI主题词 | Data privacy
|
Scopus记录号 | 2-s2.0-85120989981
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:62
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/258529 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 2.Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, SUSTech UTokyo Joint Res Ctr Super Smart City, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Kaiyue,Song, Xuan,Zhang, Chenhan,et al. Challenges and future directions of secure federated learning: a survey[J]. Frontiers of Computer Science,2022,16(5).
|
APA |
Zhang, Kaiyue,Song, Xuan,Zhang, Chenhan,&Yu, Shui.(2022).Challenges and future directions of secure federated learning: a survey.Frontiers of Computer Science,16(5).
|
MLA |
Zhang, Kaiyue,et al."Challenges and future directions of secure federated learning: a survey".Frontiers of Computer Science 16.5(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论