中文版 | English
题名

Fast Network Community Detection With Profile-Pseudo Likelihood Methods

作者
通讯作者Zhu, Ji; Guo, Jianhua
发表日期
2021-12-01
DOI
发表期刊
ISSN
0162-1459
EISSN
1537-274X
卷号118期号:542
摘要
The stochastic block model is one of the most studied network models for community detection, and fitting its likelihood function on large-scale networks is known to be challenging. One prominent work that overcomes this computational challenge is the fast pseudo-likelihood approach proposed by Amini et al. for fitting stochastic block models to large sparse networks. However, this approach does not have convergence guarantee, and may not be well suited for small and medium scale networks. In this article, we propose a novel likelihood based approach that decouples row and column labels in the likelihood function, enabling a fast alternating maximization. This new method is computationally efficient, performs well for both small- and large-scale networks, and has provable convergence guarantee. We show that our method provides strongly consistent estimates of communities in a stochastic block model. We further consider extensions of our proposed method to handle networks with degree heterogeneity and bipartite properties. Supplementary materials for this article are available online.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2020YFA0714102] ; NSFC[11690012,12171079] ; China Postdoctoral Science Foundation[2021M701588] ; Special Fund for Key Laboratories of Jilin Province, China["20190201285JC","DMS2015190"] ; NSF[DMS1821243]
WOS研究方向
Mathematics
WOS类目
Statistics & Probability
WOS记录号
WOS:000728636900001
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258542
专题理学院_统计与数据科学系
作者单位
1.Northeast Normal Univ, Sch Math & Stat, Jilin 130024, Jilin, Peoples R China
2.Northeast Normal Univ, KLAS, Jilin 130024, Jilin, Peoples R China
3.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
4.Univ Miami, Dept Management Sci, Coral Gables, FL 33124 USA
5.Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
第一作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Wang, Jiangzhou,Zhang, Jingfei,Liu, Binghui,et al. Fast Network Community Detection With Profile-Pseudo Likelihood Methods[J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,2021,118(542).
APA
Wang, Jiangzhou,Zhang, Jingfei,Liu, Binghui,Zhu, Ji,&Guo, Jianhua.(2021).Fast Network Community Detection With Profile-Pseudo Likelihood Methods.JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,118(542).
MLA
Wang, Jiangzhou,et al."Fast Network Community Detection With Profile-Pseudo Likelihood Methods".JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 118.542(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Jiangzhou]的文章
[Zhang, Jingfei]的文章
[Liu, Binghui]的文章
百度学术
百度学术中相似的文章
[Wang, Jiangzhou]的文章
[Zhang, Jingfei]的文章
[Liu, Binghui]的文章
必应学术
必应学术中相似的文章
[Wang, Jiangzhou]的文章
[Zhang, Jingfei]的文章
[Liu, Binghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。