中文版 | English
题名

Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence

作者
通讯作者Wang, Jianchun
发表日期
2019-05-21
DOI
发表期刊
ISSN
2470-0045
EISSN
2470-0053
卷号99期号:5
摘要
A subgrid-scale (SGS) model for large-eddy simulation (LES) of compressible isotropic turbulence is constructed by using a data-driven framework. An artificial neural network (ANN) based on local stencil geometry is employed to predict the unclosed SGS terms. The input features are based on the first-order and second-order derivatives of filtered velocity and temperature which appear in the second-order Taylor approximation of the SGS stress and heat flux. It is shown that the proposed ANN-7 model performs better than the gradient model in the a priori test. The correlation coefficient is larger and the relative error is smaller for ANN-7 model as compared to those of the gradient model in the a priori test. In an a posteriori analysis, the performance of ANN-7 model shows advantage over the dynamic Smagorinsky model and dynamic mixed model in the prediction of spectra and structure functions of velocity and temperature, and instantaneous flow structures. Artificial neural network is a promising tool for understanding the physical fundamentals of SGS unclosed terms with further improvement.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
WOS研究方向
Physics
WOS类目
Physics, Fluids & Plasmas ; Physics, Mathematical
WOS记录号
WOS:000469027500006
出版者
EI入藏号
20210509867435
EI主题词
Heat flux ; Large eddy simulation ; Turbulence
EI分类号
Fluid Flow:631 ; Heat Transfer:641.2 ; Mathematics:921
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:53
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25871
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
3.Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xie, Chenyue,Wang, Jianchun,Li, Ke,et al. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence[J]. PHYSICAL REVIEW E,2019,99(5).
APA
Xie, Chenyue,Wang, Jianchun,Li, Ke,&Ma, Chao.(2019).Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence.PHYSICAL REVIEW E,99(5).
MLA
Xie, Chenyue,et al."Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence".PHYSICAL REVIEW E 99.5(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[Li, Ke]的文章
百度学术
百度学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[Li, Ke]的文章
必应学术
必应学术中相似的文章
[Xie, Chenyue]的文章
[Wang, Jianchun]的文章
[Li, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。