题名 | Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence |
作者 | |
通讯作者 | Wang, Jianchun |
发表日期 | 2019-05-21
|
DOI | |
发表期刊 | |
ISSN | 2470-0045
|
EISSN | 2470-0053
|
卷号 | 99期号:5 |
摘要 | A subgrid-scale (SGS) model for large-eddy simulation (LES) of compressible isotropic turbulence is constructed by using a data-driven framework. An artificial neural network (ANN) based on local stencil geometry is employed to predict the unclosed SGS terms. The input features are based on the first-order and second-order derivatives of filtered velocity and temperature which appear in the second-order Taylor approximation of the SGS stress and heat flux. It is shown that the proposed ANN-7 model performs better than the gradient model in the a priori test. The correlation coefficient is larger and the relative error is smaller for ANN-7 model as compared to those of the gradient model in the a priori test. In an a posteriori analysis, the performance of ANN-7 model shows advantage over the dynamic Smagorinsky model and dynamic mixed model in the prediction of spectra and structure functions of velocity and temperature, and instantaneous flow structures. Artificial neural network is a promising tool for understanding the physical fundamentals of SGS unclosed terms with further improvement. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Fluids & Plasmas
; Physics, Mathematical
|
WOS记录号 | WOS:000469027500006
|
出版者 | |
EI入藏号 | 20210509867435
|
EI主题词 | Heat flux
; Large eddy simulation
; Turbulence
|
EI分类号 | Fluid Flow:631
; Heat Transfer:641.2
; Mathematics:921
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:53
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25871 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China 2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China 3.Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Xie, Chenyue,Wang, Jianchun,Li, Ke,et al. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence[J]. PHYSICAL REVIEW E,2019,99(5).
|
APA |
Xie, Chenyue,Wang, Jianchun,Li, Ke,&Ma, Chao.(2019).Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence.PHYSICAL REVIEW E,99(5).
|
MLA |
Xie, Chenyue,et al."Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence".PHYSICAL REVIEW E 99.5(2019).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论