中文版 | English
题名

City-scale human mobility prediction model by integrating gnss trajectories and sns data using long short-Term memory

作者
通讯作者Miyazawa,S.
DOI
发表日期
2020-08-03
ISSN
2194-9042
EISSN
2194-9050
会议录名称
卷号
5
期号
4
页码
87-94
摘要
Human mobility analysis on large-scale mobility data has contributed to multiple applications such as urban and transportation planning, disaster preparation and response, tourism, and public health. However, when some unusual events happen, every individual behaves differently depending on their personal routine and background information. To improve the accuracy of the crowd behavior prediction model, understanding supplemental spatiotemporal topics, such as when, where and what people observe and are interested in, is important. In this research, we develop a model integrating social network service (SNS) data into the human mobility prediction model as background information of the mobility. We employ multi-modal deep learning models using Long short-Term memory (LSTM) architecture to incorporate SNS data to a human mobility prediction model based on Global Navigation Satellite System (GNSS) data. We process anonymized interpolated GNSS trajectories from mobile phones into mobility sequence with discretized grid IDs, and apply several topic modeling methods on geo-Tagged data to extract spatiotemporal topic features in each spatiotemporal unit similar to the mobility data. Thereafter, we integrate the two datasets in the multi-modal deep learning prediction models to predict city-scale mobility. The experiment proves that the models with SNS topics performed better than baseline models.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
Scopus记录号
2-s2.0-85092196642
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/258952
专题工学院_计算机科学与工程系
作者单位
1.Center for Spatial Information Sciences,University of Tokyo,Japan
2.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,China and University of Tokyo,Japan
3.Information Technology Center,University of Tokyo,Japan
4.Zenrin DataCom CO. Ltd,Japan
推荐引用方式
GB/T 7714
Miyazawa,S.,Song,X.,Jiang,R.,et al. City-scale human mobility prediction model by integrating gnss trajectories and sns data using long short-Term memory[C],2020:87-94.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Miyazawa,S.]的文章
[Song,X.]的文章
[Jiang,R.]的文章
百度学术
百度学术中相似的文章
[Miyazawa,S.]的文章
[Song,X.]的文章
[Jiang,R.]的文章
必应学术
必应学术中相似的文章
[Miyazawa,S.]的文章
[Song,X.]的文章
[Jiang,R.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。