中文版 | English
题名

Infeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applications

作者
通讯作者Lin, Gui-Hua
发表日期
2019-05-15
DOI
发表期刊
ISSN
0377-0427
EISSN
1879-1778
卷号352页码:382-400
摘要
This paper considers a class of stochastic complementarity problems (SCP). Different from the classical complementarity problems, the SCP contains a mathematical expectation, which may not be evaluated in an explicit form in general. We combine an interior-point algorithm for deterministic cases with the well-known sample average approximation (SAA) techniques to present an SAA-based infeasible interior-point algorithm for the SCP. We investigate the convergence properties and computational complexity of the proposed algorithm under mild assumptions. Then, we extend these results to a class of mixed SCPs. Furthermore, we apply the proposed algorithms to solve a stochastic natural gas transmission problem and a stochastic oligopoly model. Preliminary numerical experiments indicate that the proposed approach is competitive with some existing methods. (C) 2018 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Humanity and Social Science Foundation of Ministry of Education of China[15YJA630034]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000458713000027
出版者
EI入藏号
20185306322588
EI主题词
Approximation algorithms ; Competition ; Natural gas ; Nonlinear programming ; Numerical methods ; Stochastic systems
EI分类号
Gas Fuels:522 ; Industrial Economics:911.2 ; Mathematics:921 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Systems Science:961
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25901
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
3.Yokohama Natl Univ, Fac Business Adm, Hodogaya Ku, 79-4 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
推荐引用方式
GB/T 7714
Yang, Zhen-Ping,Zhang, Jin,Zhu, Xide,et al. Infeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applications[J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2019,352:382-400.
APA
Yang, Zhen-Ping,Zhang, Jin,Zhu, Xide,&Lin, Gui-Hua.(2019).Infeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applications.JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,352,382-400.
MLA
Yang, Zhen-Ping,et al."Infeasible interior-point algorithms based on sampling average approximations for a class of stochastic complementarity problems and their applications".JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 352(2019):382-400.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yang-2019-Infeasible(540KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Zhen-Ping]的文章
[Zhang, Jin]的文章
[Zhu, Xide]的文章
百度学术
百度学术中相似的文章
[Yang, Zhen-Ping]的文章
[Zhang, Jin]的文章
[Zhu, Xide]的文章
必应学术
必应学术中相似的文章
[Yang, Zhen-Ping]的文章
[Zhang, Jin]的文章
[Zhu, Xide]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。