题名 | Quantum Control and Quantum Simulation of Many-body Systems |
姓名 | |
姓名拼音 | HAI Yongju
|
学号 | 11930547
|
学位类型 | 硕士
|
学位专业 | 070201 理论物理
|
学科门类/专业学位类别 | 07 理学
|
导师 | |
导师单位 | 物理系;量子科学与工程研究院
|
论文答辩日期 | 2021-11-16
|
论文提交日期 | 2021-12-24
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 量子计算机将使我们能够解决某些经典计算机难以解决的问题。本论文提出了几种提高含噪声中等规模量子处理器性能的新方法,以及当前量子处理器作为量子模拟器在多体量子物理研究中的应用。 首先,我们简要回顾了超导电路,介绍了超导量子比特及其耦合的基本电路结构,以及超导量子比特的标定和量子控制。我们还简要回顾了两能级系统的量子动力学,包括几个解析可解模型和周期驱动系统的形式理论,它们在很多量子控制方案中扮演着重要角色。 在第四章,我们讨论了固态多比特量子芯片中实现高精度量子控制的主要障碍之一:由相互作用引起的剩余耦合。我们提出了一个几何参数化下的容错量子门方案,在微扰区间展示了高保真度、高容错性的通用量子门集合;并开发了一种实用的脉冲优化算法,借助自动微分进行梯度求解,并将脉冲约束整合进优化过程中,实现了给定噪声参数下的高保真度量子门。 在第五章中,我们研究了一种量子干涉效应启发的测量Renyi-2纠缠熵的新方法及其在多体量子模拟中的应用。最后,我们在第六章和第七章介绍了我们在非平衡量子物态和非厄米量子临界性的量子模拟方案。我们提出了Floquet伊辛模型的数字量子模拟方案,从动力学的角度探测了该模型在时间、空间上的非平庸量子序;探索了非幺正哈密顿量演化和一般非幺正操作在量子处理器中的实现,并提出了在开放量子系统中探测杨-李量子临界性的实验方案。 |
其他摘要 | Quantum computers would enable us to tackle certain problems that are intractable on their classical counterparts. This thesis presents several new approaches to improve the performance of noisy intermediate-scale quantum processors and the application of the current quantum processors as quantum simulators in the study of many-body quantum physics. First, we make a brief review of superconducting circuit--one of the most promising platforms for quantum information processing. We summarize the basic architecture for superconducting qubits and their coupling, as well as calibration and quantum control of superconducting qubits. We also make a short review of quantum dynamics of two-level systems, including several analytically solvable models and a formalism for periodically driven systems, which are important in many quantum control protocols. We then address the issue of residual zz-coupling caused by unwanted interaction—a major obstacle to high-precision quantum control in solid-state multi-qubit systems in Chapter 4. We provide a geometrical parametrized error-robust quantum gate and demonstrate a high-fidelity universal gate-set in the perturbative region, and develop a practical constrained optimization algorithm assisted by auto-differentiation to implement targeted-correction gates with few parameters in given noise strengths, offering a promising quantum optimal control approach via pulse engineering. In Chapter 5, we study a novel approach to measuring Renyi-2 entanglement entropy inspired by quantum interferometry and its application in the study of many-body quantum dynamics. Finally, we highlight our studies in quantum simulation of non-equilibrium quantum phases of matter and non-Hermitian quantum criticality, in Chapter 6 and Chapter 7. We propose a digital quantum simulation of the Floquet Ising model and probe its spatial-temporal order dynamically. We then study the realization of non-unitary Hamiltonian evolution and general non-unitary operation in quantum processors and propose an experimental study of Yang-Lee quantum criticality embedded in an open quantum system. |
关键词 | |
其他关键词 | |
语种 | 英语
|
培养类别 | 独立培养
|
入学年份 | 2019
|
学位授予年份 | 2021
|
参考文献列表 | [1] Devoret M H, Schoelkopf R J. Superconducting circuits for quantum information: an outlook [J]. Science, 2013, 339(6124): 1169-1174. [2] AI G Q. Exponential suppression of bit or phase errors with cyclic error correction[J]. Nature, 2021, 595(7867): 383. [3] Ofek N, Petrenko A, Heeres R, et al. Extending the lifetime of a quantum bit with error correc- tion in superconducting circuits[J]. Nature, 2016, 536(7617): 441-445. [4] Fowler A G, Mariantoni M, Martinis J M, et al. Surface codes: Towards practical large-scale quantum computation[J]. Physical Review A, 2012, 86(3): 032324. [5] Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510. [6] Krantz P, Kjaergaard M, Yan F, et al. A quantum engineer’s guide to superconducting qubits [J]. Applied Physics Reviews, 2019, 6(2): 021318. [7] Girvin S M. Circuit qed: superconducting qubits coupled to microwave photons[J]. Quantum machines: measurement and control of engineered quantum systems, 2014: 113-256. [8] Chen Z. Metrology of quantum control and measurement in superconducting qubits[M]. Uni- versity of California, Santa Barbara, 2018. [9] Richer S. Perturbative analysis of two-qubit gates on transmon qubits[J]. Thessis, RWTH Aachen University, 2013. [10] Oliver W D. Superconducting qubits[J]. Quantum Information Processing: Lecture Notes of the 44th IFF Spring School 2013, 2013. [11] Blais A, Huang R S, Wallraff A, et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation[J]. Physical Review A, 2004, 69 (6): 062320. [12] Yan F, Krantz P, Sung Y, et al. Tunable coupling scheme for implementing high-fidelity two- qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062. [13] Xu Y, Chu J, Yuan J, et al. High-fidelity, high-scalability two-qubit gate scheme for supercon- ducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503. [14] Stehlik J, Zajac D, Underwood D, et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits[J]. Physical Review Letters, 2021, 127(8): 080505. [15] Mitchell B K, Naik R K, Morvan A, et al. Hardware-efficient microwave-activated tunable coupling between superconducting qubits[J]. arXiv preprint arXiv:2105.05384, 2021. [16] Mundada P, Zhang G, Hazard T, et al. Suppression of qubit crosstalk in a tunable coupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023. [17] Ibm quantum[EB/OL]. https://quantum-computing.ibm.com/. [18] Kolodrubetz M, Sels D, Mehta P, et al. Geometry and non-adiabatic response in quantum and classical systems[J]. Physics Reports, 2017, 697: 1-87. [19] Hatomura T, Takahashi K. Controlling and exploring quantum systems by algebraic expression of adiabatic gauge potential[J]. Physical Review A, 2021, 103(1): 012220. [20] Lehto J, et al. Time-dependent quantum systems[J]. 2017. [21] Oka T, Kitamura S. Floquet engineering of quantum materials[J]. Annual Review of Condensed Matter Physics, 2019, 10: 387-408. [22] Rudner M S, Lindner N H. The floquet engineer’s handbook[J]. arXiv preprint arXiv:2003.08252, 2020. [23] Eckardt A, Anisimovas E. High-frequency approximation for periodically driven quantum sys- tems from a floquet-space perspective[J]. New journal of physics, 2015, 17(9): 093039. [24] Huang Z, Mundada P S, Gyenis A, et al. Engineering dynamical sweet spots to protect qubits from 1/f noise[J]. Physical Review Applied, 2021, 15(3): 034065. [25] Deng X H, Hai Y J, Li J N, et al. Correcting correlated errors for quantum gates in multi-qubit systems using smooth pulse control[J]. arXiv preprint arXiv:2103.08169, 2021. [26] Hai Y J, Li J, Guo Q, et al. Optimal robust quantum control against spectators and its application on superconducting qubits[J]. In preparation, 2021. [27] Song Y, Li J, Hai Y J, et al. Optimizing quantum control pulses with complex constraints and few variables through tensorflow[J]. arXiv preprint arXiv:2110.05334, 2021. [28] Krinner S, Lazar S, Remm A, et al. Benchmarking coherent errors in controlled-phase gates due to spectator qubits[J]. Physical Review Applied, 2020, 14(2): 024042. [29] Sung Y, Ding L, Braumüller J, et al. Realization of high-fidelity cz and zz-free iswap gates with a tunable coupler[J]. arXiv preprint arXiv:2011.01261, 2020. [30] Zhu G, Ferguson D G, Manucharyan V E, et al. Circuit qed with fluxonium qubits: Theory of the dispersive regime[J]. Physical Review B, 2013, 87(2): 024510. [31] Hanson R, Awschalom D D. Coherent manipulation of single spins in semiconductors[J]. Na- ture, 2008, 453(7198): 1043-1049. [32] Barends R, Shabani A, Lamata L, et al. Digitized adiabatic quantum computing with a super- conducting circuit[J]. Nature, 2016, 534(7606): 222-226. [33] Delone N B, Krainov V P. Ac stark shift of atomic energy levels[J]. Physics-Uspekhi, 1999, 42 (7): 669. [34] Zeng J, Yang C, Dzurak A, et al. Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates[J]. Physical Review A, 2019, 99(5): 052321. [35] Gustavsson S, Zwier O, Bylander J, et al. Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions[J]. Physical Review Letters, 2013, 110(4): 040502. [36] Zeng J, Deng X H, Russo A, et al. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling[J]. New Journal of Physics, 2018, 20(3): 033011. [37] Press W H, William H, Teukolsky S A, et al. Numerical recipes 3rd edition: The art of scientific computing[M]. Cambridge university press, 2007. [38] Qiu J, Zhou Y, Hu C K, et al. Suppressing coherent two-qubit errors via dynamical decoupling [J]. arXiv preprint arXiv:2104.02669, 2021. [39] Nielsen M A, Chuang I. Quantum computation and quantum information[M]. American Asso- ciation of Physics Teachers, 2002. [40] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865. [41] Witten E. A mini-introduction to information theory[J]. La Rivista del Nuovo Cimento, 2020, 43(4): 187-227. [42] Wen X G. Choreographed entanglement dances: Topological states of quantum matter[J]. Sci- ence, 2019, 363(6429). [43] Lewis-Swan R, Safavi-Naini A, Kaufman A, et al. Dynamics of quantum information[J]. Nature Reviews Physics, 2019, 1(10): 627-634. [44] Eisert J, Cramer M, Plenio M B. Colloquium: Area laws for the entanglement entropy[J]. Reviews of Modern Physics, 2010, 82(1): 277. [45] Abanin D A, Altman E, Bloch I, et al. Colloquium: Many-body localization, thermalization, and entanglement[J]. Reviews of Modern Physics, 2019, 91(2): 021001. [46] Bauer B, Nayak C. Area laws in a many-body localized state and its implications for topological order[J]. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013(09): P09005. [47] Daley A, Pichler H, Schachenmayer J, et al. Measuring entanglement growth in quench dynam- ics of bosons in an optical lattice[J]. Physical Review Letters, 2012, 109(2): 020505. [48] Islam R, Ma R, Preiss P M, et al. Measuring entanglement entropy in a quantum many-body system[J]. Nature, 2015, 528(7580): 77-83. [49] Ekert A K, Alves C M, Oi D K, et al. Direct estimations of linear and nonlinear functionals of a quantum state[J]. Physical Review Letters, 2002, 88(21): 217901. [50] Sjöqvist E, Pati A K, Ekert A, et al. Geometric phases for mixed states in interferometry[J]. Physical Review Letters, 2000, 85(14): 2845. [51] Maldacena J, Shenker S H, Stanford D. A bound on chaos[J]. Journal of High Energy Physics, 2016, 2016(8): 106. [52] Yao N Y, Grusdt F, Swingle B, et al. Interferometric approach to probing fast scrambling[J]. arXiv preprint arXiv:1607.01801, 2016. [53] Shen H, Zhang P, Fan R, et al. Out-of-time-order correlation at a quantum phase transition[J]. Physical Review B, 2017, 96(5): 054503. [54] Hosur P, Qi X L, Roberts D A, et al. Chaos in quantum channels[J]. Journal of High Energy Physics, 2016, 2016(2): 4. [55] Li J, Fan R, Wang H, et al. Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator[J]. Physical Review X, 2017, 7(3): 031011. [56] Preskill J. Quantum computing in the nisq era and beyond[J]. Quantum, 2018, 2: 79. [57] Van Enk S, Beenakker C. Measuring tr 𝜌 n on single copies of 𝜌 using random measurements [J]. Physical Review Letters, 2012, 108(11): 110503. [58] Elben A, Vermersch B, Roos C F, et al. Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states[J]. Physical Review A, 2019, 99(5): 052323. [59] Brydges T, Elben A, Jurcevic P, et al. Probing rényi entanglement entropy via randomized measurements[J]. Science, 2019, 364(6437): 260-263. [60] Elben A, Kueng R, Huang H Y R, et al. Mixed-state entanglement from local randomized measurements[J]. Physical Review Letters, 2020, 125(20): 200501. [61] Vermersch B, Elben A, Sieberer L M, et al. Probing scrambling using statistical correlations between randomized measurements[J]. Physical Review X, 2019, 9(2): 021061. [62] Huang H Y, Kueng R, Preskill J. Predicting many properties of a quantum system from very few measurements[J]. Nature Physics, 2020, 16(10): 1050-1057. [63] Moessner R, Sondhi S L. Equilibration and order in quantum Floquet matter[J]. Nature Physics, 2017, 13(5): 424-428. [64] Ueda M. Quantum equilibration, thermalization and prethermalization in ultracold atoms[J]. Nature Reviews Physics, 2020, 2(12): 669-681. [65] Khemani V, Moessner R, Sondhi S. A brief history of time crystals[J]. arXiv preprint arXiv:1910.10745, 2019. [66] Khemani V, Lazarides A, Moessner R, et al. Phase structure of driven quantum systems[J]. Physical Review Letters, 2016, 116(25): 250401. [67] von Keyserlingk C W, Sondhi S L. Phase structure of 1d interacting floquet systems i: Abelian spts[J]. arXiv preprint arXiv:1602.02157, 2016. [68] von Keyserlingk C, Sondhi S. 1d many-body localized floquet systems ii: Symmetry-broken phases[J]. arXiv preprint arXiv:1602.06949, 2016. [69] Huse D A, Nandkishore R, Oganesyan V, et al. Localization-protected quantum order[J]. Phys- ical Review B, 2013, 88(1): 014206. [70] Parameswaran S, Vasseur R. Many-body localization, symmetry and topology[J]. Reports on Progress in Physics, 2018, 81(8): 082501. [71] Atas Y, Bogomolny E, Giraud O, et al. Distribution of the ratio of consecutive level spacings in random matrix ensembles[J]. Physical Review Letters, 2013, 110(8): 084101. [72] Pal A, Huse D A. Many-body localization phase transition[J]. Physical review b, 2010, 82(17): 174411. [73] Serbyn M, Moore J E. Spectral statistics across the many-body localization transition[J]. Phys- ical Review B, 2016, 93(4): 041424. [74] Else D V, Bauer B, Nayak C. Floquet time crystals[J]. Physical Review Letters, 2016, 117(9): 090402. [75] Berdanier W, Kolodrubetz M, Parameswaran S, et al. Floquet quantum criticality[J]. Proceed- ings of the National Academy of Sciences, 2018, 115(38): 9491-9496. [76] Edwards S F, Anderson P W. Theory of spin glasses[J]. Journal of Physics F: Metal Physics, 1975, 5(5): 965. [77] Kjäll J A, Bardarson J H, Pollmann F. Many-body localization in a disordered quantum ising chain[J]. Physical Review Letters, 2014, 113(10): 107204. [78] Mi X, Ippoliti M, Quintana C, et al. Observation of time-crystalline eigenstate order on a quan- tum processor[J]. arXiv preprint arXiv:2107.13571, 2021. [79] Choi S, Choi J, Landig R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system[J]. Nature, 2017, 543(7644): 221-225. [80] Zhang X, Jiang W, Deng J, et al. Observation of a symmetry-protected topological time crystal with superconducting qubits[J]. arXiv preprint arXiv:2109.05577, 2021. [81] Ashida Y, Gong Z, Ueda M. Non-hermitian physics[J]. Advances in Physics, 2020, 69(3): 249-435. [82] Bender C M. Making sense of non-hermitian hamiltonians[J]. Reports on Progress in Physics, 2007, 70(6): 947. [83] Verstraete F, Wolf M M, Cirac J I. Quantum computation and quantum-state engineering driven by dissipation[J]. Nature physics, 2009, 5(9): 633-636. [84] Hodaei H, Hassan A U, Wittek S, et al. Enhanced sensitivity at higher-order exceptional points [J]. Nature, 2017, 548(7666): 187-191. [85] Barreiro J T, Müller M, Schindler P, et al. An open-system quantum simulator with trapped ions [J]. Nature, 2011, 470(7335): 486-491. [86] Wu Y, Liu W, Geng J, et al. Observation of parity-time symmetry breaking in a single-spin system[J]. Science, 2019, 364(6443): 878-880. [87] Han J, Cai W, Hu L, et al. Experimental simulation of open quantum system dynamics via trotterization[J]. Physical Review Letters, 2021, 127(2): 020504. [88] Kawabata K, Ashida Y, Ueda M. Information retrieval and criticality in parity-time-symmetric systems[J]. Physical Review Letters, 2017, 119(19): 190401. [89] Chang P Y, You J S, Wen X, et al. Entanglement spectrum and entropy in topological non- hermitian systems and nonunitary conformal field theory[J]. Physical Review Research, 2020, 2(3): 033069. [90] Wei B B, Liu R B. Lee-yang zeros and critical times in decoherence of a probe spin coupled to a bath[J]. Physical Review Letters, 2012, 109(18): 185701. [91] Francis A, Zhu D, Alderete C H, et al. Many body thermodynamics on quantum computers via partition function zeros[J]. arXiv preprint arXiv:2009.04648, 2020. [92] Dogra S, Melnikov A A, Paraoanu G S. Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor[J]. Communications Physics, 2021, 4(1): 1-8. [93] Matsumoto N, Nakagawa M, Ueda M. Embedding the yang-lee quantum criticality in open quantum systems[J]. arXiv preprint arXiv:2012.13144, 2020. [94] Xu J S, Yung M H, Xu X Y, et al. Demon-like algorithmic quantum cooling and its realization with quantum optics[J]. Nature Photonics, 2014, 8(2): 113-118. [95] Childs A M, Wiebe N. Hamiltonian simulation using linear combinations of unitary operations [J]. arXiv preprint arXiv:1202.5822, 2012. [96] Childs A M, Kothari R, Somma R D. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision[J]. SIAM Journal on Computing, 2017, 46 (6): 1920-1950. [97] Wu P. Additive combinations of special operators[J]. Banach Center Publications, 1994, 30(1): 337-361. [98] Wei S J, Ruan D, Long G L. Duality quantum algorithm efficiently simulates open quantum systems[J]. Scientific Reports, 2016, 6(1): 1-9. [99] Motta M, Sun C, Tan A T, et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution[J]. Nature Physics, 2020, 16(2): 205-210. [100] Liu T, Liu J G, Fan H. Probabilistic nonunitary gate in imaginary time evolution[J]. Quantum Information Processing, 2021, 20(6): 1-21. [101] Yang C N, Lee T D. Statistical theory of equations of state and phase transitions. i. theory of condensation[J]. Physical Review, 1952, 87(3): 404. [102] Lee T D, Yang C N. Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model[J]. Physical Review, 1952, 87(3): 410. [103] Fisher M E. Yang-lee edge singularity and 𝜙 3 field theory[J]. Physical Review Letters, 1978, 40(25): 1610. [104] Shankar R. Quantum field theory and condensed matter: An introduction[M]. Cambridge University Press, 2017. [105] Winkler R, Papadakis S, De Poortere E, et al. Spin-orbit coupling in two-dimensional electron and hole systems: volume 41[M]. Springer, 2003. [106] Bravyi S, DiVincenzo D P, Loss D. Schrieffer–wolff transformation for quantum many-body systems[J]. Annals of physics, 2011, 326(10): 2793-2826. [107] Zelevinsky V. Quantum physics. vol. 1. from basics to symmetries and perturbations[J]. 2011. [108] Sachdev S. Quantum phase transitions[M]. Cambridge university press, 2011. |
所在学位评定分委会 | 物理系
|
国内图书分类号 | O413
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/259013 |
专题 | 理学院_物理系 |
推荐引用方式 GB/T 7714 |
Hai YJ. Quantum Control and Quantum Simulation of Many-body Systems[D]. 深圳. 南方科技大学,2021.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11930547海咏菊理学院.pdf(9009KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[海咏菊]的文章 |
百度学术 |
百度学术中相似的文章 |
[海咏菊]的文章 |
必应学术 |
必应学术中相似的文章 |
[海咏菊]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论