中文版 | English
题名

Investigating Bi-Level Optimization for Learning and Vision From a Unified Perspective: A Survey and Beyond

作者
发表日期
2022-12-01
DOI
发表期刊
ISSN
0162-8828
EISSN
1939-3539
卷号44期号:12页码:10045-10067
摘要
Bi-Level Optimization (BLO) is originated from the area of economic game theory and then introduced into the optimization community. BLO is able to handle problems with a hierarchical structure, involving two levels of optimization tasks, where one task is nested inside the other. In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems, such as hyper-parameter optimization, multi-task and meta learning, neural architecture search, adversarial learning and deep reinforcement learning, actually all contain a series of closely related subproblms. In this paper, we first uniformly express these complex learning and vision problems from the perspective of BLO. Then we construct a best-response-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies, covering aspects ranging from fundamental automatic differentiation schemes to various accelerations, simplifications, extensions and their convergence and complexity properties. Last but not least, we discuss the potentials of our unified BLO framework for designing new algorithms and point out some promising directions for future research. A list of important papers discussed in this survey, corresponding codes, and additional resources on BLOs are publicly available at: https://github.com/vis-opt-group/BLO.
关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2020YFB1313503] ; National Natural Science Foundation of China["61731018","61922019","11971220"] ; Shenzhen Science and Technology Program[RCYX20200714114700072] ; Macao Science and Technology Development Fund[061/2020/A2] ; Tianyuan Fund for Mathematics[12026606] ; PKU-Baidu Fund Project[2020BD006]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000880661400105
出版者
EI入藏号
20215111368485
EI主题词
Computer games ; Deep learning ; Game theory ; Job analysis ; Parallel processing systems ; Reinforcement learning
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2 ; Probability Theory:922.1
ESI学科分类
ENGINEERING
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638340
引用统计
被引频次[WOS]:85
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259325
专题南方科技大学
理学院_数学系
作者单位
1.DUT-RU Intenational School of Information Science and Technology, Dalian University of Technology, 12399 Dalian, Liaoning, China, (e-mail: rsliu@dlut.edu.cn)
2.DUT-RU International School of Information Science Engineering, Dalian University of Technology, 12399 Dalian, Liaoning, China, (e-mail: jiaxinn.gao@outlook.com)
3.Department of Math, Southern University of Science and Technology, 255310 Shenzhen, Guangdong, China, 518055 (e-mail: zhangj9@sustech.edu.cn)
4.Faculty of Science, Institute for Information and System Science, Xi'an, Shaan'xi, China, 710049 (e-mail: dymeng@mail.xjtu.edu.cn)
5.Key Lab. of Machine Perception (MOE), Peking University, Beijing, Beijing, China, 100080 (e-mail: zlin@pku.edu.cn)
推荐引用方式
GB/T 7714
Liu,Risheng,Gao,Jiaxin,Zhang,Jin,et al. Investigating Bi-Level Optimization for Learning and Vision From a Unified Perspective: A Survey and Beyond[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2022,44(12):10045-10067.
APA
Liu,Risheng,Gao,Jiaxin,Zhang,Jin,Meng,Deyu,&Lin,Zhouchen.(2022).Investigating Bi-Level Optimization for Learning and Vision From a Unified Perspective: A Survey and Beyond.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,44(12),10045-10067.
MLA
Liu,Risheng,et al."Investigating Bi-Level Optimization for Learning and Vision From a Unified Perspective: A Survey and Beyond".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 44.12(2022):10045-10067.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@TPAMI.2021.3(13416KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Risheng]的文章
[Gao,Jiaxin]的文章
[Zhang,Jin]的文章
百度学术
百度学术中相似的文章
[Liu,Risheng]的文章
[Gao,Jiaxin]的文章
[Zhang,Jin]的文章
必应学术
必应学术中相似的文章
[Liu,Risheng]的文章
[Gao,Jiaxin]的文章
[Zhang,Jin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TPAMI.2021.3132674.pdf
格式: Adobe PDF
文件名: 10.1109@TPAMI.2021.3132674.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。