中文版 | English
题名

ReSGait: The Real-Scene Gait Dataset

作者
DOI
发表日期
2021-08-04
ISSN
2474-9680
ISBN
978-1-6654-3781-3
会议录名称
页码
1-8
会议日期
4-7 Aug. 2021
会议地点
Shenzhen, China
摘要
Many studies have shown that gait recognition can be used to identify humans at a long distance, with promising results on current datasets. However, those datasets are collected under controlled situations and predefined conditions, which limits the extrapolation of the results to unconstrained situations in which the subjects walk freely in scenes. To cover this gap, we release a novel real-scene gait dataset (ReSGait), which is the first dataset collected in unconstrained scenarios with freely moving subjects and not controlled environmental parameters. Overall, our dataset is composed of 172 subjects and 870 video sequences, recorded over 15 months. Video sequences are labeled with gender, clothing, carrying conditions, taken walking route, and whether mobile phones were used or not. Therefore, the main characteristics of our dataset that differentiate it from other datasets are as follows: (i) uncontrolled real-life scenes and (ii) long recording time. Finally, we empirically assess the difficulty of the proposed dataset by evaluating state-of-The-Art gait approaches for silhouette and pose modalities. The results reveal an accuracy of less than 35%, showing the inherent level of difficulty of our dataset compared to other current datasets, in which accuracies are higher than 90%. Thus, our proposed dataset establishes a new level of difficulty in the gait recognition problem, much closer to real life.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20213410818324
EI主题词
Gait analysis ; Video recording
EI分类号
Bioengineering and Biology:461 ; Biomechanics, Bionics and Biomimetics:461.3 ; Television Systems and Equipment:716.4
Scopus记录号
2-s2.0-85113339885
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9484347
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259469
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen University,College of Computer Science and Software Engineering,China
2.University of Malaga,Department of Computer Architecture,Spain
3.University of Cordoba,Department of Computing and Numerical Analysis,Spain
4.Southern University of Science and Technology,Department of Computer Science and Engineering,China
推荐引用方式
GB/T 7714
Mu,Zihao,Castro,Francisco M.,Marin-Jimenez,Manuel J.,et al. ReSGait: The Real-Scene Gait Dataset[C],2021:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mu,Zihao]的文章
[Castro,Francisco M.]的文章
[Marin-Jimenez,Manuel J.]的文章
百度学术
百度学术中相似的文章
[Mu,Zihao]的文章
[Castro,Francisco M.]的文章
[Marin-Jimenez,Manuel J.]的文章
必应学术
必应学术中相似的文章
[Mu,Zihao]的文章
[Castro,Francisco M.]的文章
[Marin-Jimenez,Manuel J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。