中文版 | English
题名

Technological Developments in Pursuit of Recess-Free Normally-OFF AlGaN/GaN HEMTs

其他题名
免刻蚀的常关型氮化镓高电子迁移率晶体管技术开发
姓名
学号
11751021
学位类型
博士
学位专业
Electronic and Computer Engineering
学科门类/专业学位类别
Doctor of Philosophy
导师
于洪宇
论文答辩日期
2021-08-12
论文提交日期
2021-12-31
学位授予单位
香港科技大学
学位授予地点
香港
摘要
Thanks to GaN's high breakdown electric field, high electron mobility and saturation velocity, GaN-based devices are considered promising candidates for power switching and RF power amplifier applications. Among them, the highly conductive two-dimensional electron-gas (2DEG) at the (In,Al,Ga)N/GaN heterostructure enables the power-efficient operation of high-electron-mobility transistors (HEMTs). However, the inherent channel makes GaN HEMTs normally-ON, while the Normally-OFF operation of GaN HEMTs is preferred for various applications. Recess processes for fabricating normally-OFF devices generally compromise devices’ performance. In this thesis, technologies for realizing recess-free normally-OFF GaN HEMTs are developed. Due to the piezoelectric nature of GaN, strain engineering can modulate the electric performance of GaN HEMTs. The local strain engineering based on the SiNx stress liner is developed. The SiNx-introduced compression in the gate region increases the threshold voltage (VTH) and reduces the Schottky gate leakage. As a result, the ION/IOFF ratio of the Schottky gate HEMTs with strain engineering reaches 108. Furthermore, the normally-OFF GaN HEMT using strain engineering is realized, showing the potential application on class-AB or class-B RF power amplifier applications.Schottky gate is inappropriate for normally-OFF GaN HEMTs due to its severe leakage under forward bias. Therefore, as the second part of the thesis, the ozone-based deposition of HfO2 for viable MIS gate structure is proposed. Replacing the conventional water oxidant with ozone reduces the oxide bulk's oxygen vacancy-related defects, resulting in smaller oxide leakage and higher critical electric field. Furthermore, the more abrupt HfO2/GaN interface and amorphous HfO2 bulk form on the ozone pre-oxidized GaN surface. The improved interface translates to the satisfactory electric performance of MIS HEMTs. The high-k nature is also evidently helpful to develop the normally-OFF HEMTs, supported by an analytical model for VTH of MIS HEMTs. The proposed HfO2 gate oxide scheme is also integrated with an ultra-thin barrier heterostructure. With the optimized annealing condition, the normally-OFF operation of MIS HEMTs is realized. Also, the electron mobility in the gate region is enhanced after annealing. The high electron mobility in the gate region together with the successful 2DEG recovery by the SiNx passivation enable the excellent output performance, benchmarked against recess-based devices.
其他摘要
由于GaN(氮化镓)的高击穿电场、高电子迁移率和饱和速度,GaN电子元件被认为是下世代电源开关和射频功率放大器应用的选择之一。其中,(In,Al,Ga)N/GaN异质接面的二维电子气(2DEG)通道实现了高电子迁移率电晶体 (HEMT)。然而,元件却因该通道具有常开特性,不利于各项应用,而制备常关元件的技术却又通常会损害元件的性能。本论文开发了实现免蚀刻常关GaN HEMT的技术。由于 GaN 的压电特性,GaN HEMT的电特性可藉由应力工程调整。首先,本论文开发了基于SiNx应力膜层的局部应力工程。在闸极区域中,SiNx引入的压应力,增加了元件开启电压并减少了肖特基闸极漏电。因此,采用应力工程的肖特基闸极电晶体的开关电流比达到108。此外,本工作演示了利用应力工程实现的常关 GaN HEMT,该常关元件于 AB 类或 B 类射频功率放大器具有潜在应用价值。肖特基闸极不适用于常关型 GaN HEMT,因为肖特基接面在正向偏压下会出现严重漏电。因此,作为论文的第二部分,我们提出了基于臭氧的 HfO2 沉积技术,以应用于高质量的金属-氧化物-半导体(MOS)闸极结构。用臭氧代替传统的水作为氧化剂减少了氧化物本体的氧空位缺陷,抑制氧化物漏电和提高氧化物的崩溃电场。此外,我们发现在臭氧预氧化的GaN表面可形成更锐利的HfO2/GaN界面和非晶态的HfO2层。增进的氧化物/半导体界面和氧化物质量成功反应在MOS HEMT的优异电性能。在元件开启电压的模型的支持下,HfO2的高介电常数也有助于开发常关型元件。本论文提出的闸极HfO2方案还与超薄势垒异质结构结合制成MOS HEMT元件。通过优化的退火条件,实现了常关型元件。此外,退火提升了闸极区中的电子迁移率。闸极区域的高电子迁移率以及经过SiNx钝化,成功恢复的二维电子气实现了出色的元件输出特性。
关键词
其他关键词
语种
英语
培养类别
联合培养
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259643
专题工学院_深港微电子学院
作者单位
南方科技大学
推荐引用方式
GB/T 7714
Zheng WZ. Technological Developments in Pursuit of Recess-Free Normally-OFF AlGaN/GaN HEMTs[D]. 香港. 香港科技大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Technological Develo(5323KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郑韦志]的文章
百度学术
百度学术中相似的文章
[郑韦志]的文章
必应学术
必应学术中相似的文章
[郑韦志]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。