中文版 | English
题名

Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning

作者
通讯作者Yan, Qifeng; Ma, Shaodong; Zhao, Yitian
发表日期
2021-12-10
DOI
发表期刊
EISSN
1662-453X
卷号15
摘要

Trigeminal neuralgia caused by paroxysmal and severe pain in the distribution of the trigeminal nerve is a rare chronic pain disorder. It is generally accepted that compression of the trigeminal root entry zone by vascular structures is the major cause of primary trigeminal neuralgia, and vascular decompression is the prior choice in neurosurgical treatment. Therefore, accurate preoperative modeling/segmentation/visualization of trigeminal nerve and its surrounding cerebrovascular is important to surgical planning. In this paper, we propose an automated method to segment trigeminal nerve and its surrounding cerebrovascular in the root entry zone, and to further reconstruct and visual these anatomical structures in three-dimensional (3D) Magnetic Resonance Angiography (MRA). The proposed method contains a two-stage neural network. Firstly, a preliminary confidence map of different anatomical structures is produced by a coarse segmentation stage. Secondly, a refinement segmentation stage is proposed to refine and optimize the coarse segmentation map. To model the spatial and morphological relationship between trigeminal nerve and cerebrovascular structures, the proposed network detects the trigeminal nerve, cerebrovasculature, and brainstem simultaneously. The method has been evaluated on a dataset including 50 MRA volumes, and the experimental results show the state-of-the-art performance of the proposed method with an average Dice similarity coefficient, Hausdorff distance, and average surface distance error of 0.8645, 0.2414, and 0.4296 on multi-tissue segmentation, respectively.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Zhejiang Provincial Natural Science Foundation of China[LZ19F010001] ; Youth Innovation Promotion Association CAS[2021298] ; Key Research and Development Program of Zhejiang Province[2020C03036] ; Ningbo 2025 ST Megaprojects[
WOS研究方向
Neurosciences & Neurology
WOS类目
Neurosciences
WOS记录号
WOS:000734301500001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259855
专题工学院_计算机科学与工程系
作者单位
1.Ningbo First Hosp, Dept Neurosurg, Ningbo, Peoples R China
2.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Ningbo, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
5.Ningbo Univ, Affiliated Peoples Hosp, Ningbo, Peoples R China
推荐引用方式
GB/T 7714
Lin, Jinghui,Mou, Lei,Yan, Qifeng,et al. Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning[J]. FRONTIERS IN NEUROSCIENCE,2021,15.
APA
Lin, Jinghui.,Mou, Lei.,Yan, Qifeng.,Ma, Shaodong.,Yue, Xingyu.,...&Zhao, Yitian.(2021).Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning.FRONTIERS IN NEUROSCIENCE,15.
MLA
Lin, Jinghui,et al."Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning".FRONTIERS IN NEUROSCIENCE 15(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Automated Segmentati(1793KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin, Jinghui]的文章
[Mou, Lei]的文章
[Yan, Qifeng]的文章
百度学术
百度学术中相似的文章
[Lin, Jinghui]的文章
[Mou, Lei]的文章
[Yan, Qifeng]的文章
必应学术
必应学术中相似的文章
[Lin, Jinghui]的文章
[Mou, Lei]的文章
[Yan, Qifeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning.pdf
格式: Adobe PDF
文件名: Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。