中文版 | English
题名

Data-driven model development for large-eddy simulation of turbulence using gene-expression programing

作者
通讯作者Zhao, Yaomin
发表日期
2021-12-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号33期号:12
摘要
We apply the gene-expression programing (GEP) method to develop subgrid-scale models for large-eddy simulations (LESs) of turbulence. The GEP model is trained based on Galilean invariants and tensor basis functions, and the training data are from direct numerical simulation (DNS) of incompressible isotropic turbulence. The model trained with GEP has been explicitly tested, showing that the GEP model can not only provide high correlation coefficients in a priori tests but also show great agreement with filtered DNS data when applied to LES. Compared to commonly used models like the dynamic Smagorinsky model and the dynamic mixed model, the GEP model provides significantly improved results on turbulence statistics and flow structures. Based on an analysis of the explicitly given model equation, the enhanced predictions are related to the fact that the GEP model is less dissipative and that it introduces high-order terms closely related to vorticity distribution. Furthermore, the GEP model with the explicit equation is straightforward to be applied in LESs, and its additional computational cost is substantially smaller than that of models trained with artificial neural networks with similar levels of predictive accuracies in a posteriori tests.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2020YFE0204200] ; National Natural Science Foundation of China[92152102]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000731946900010
出版者
EI入藏号
20220111431233
EI主题词
Internet protocols ; Large eddy simulation ; Neural networks ; Turbulence
EI分类号
Biology:461.9 ; Fluid Flow:631 ; Data Communication, Equipment and Techniques:722.3 ; Computer Software, Data Handling and Applications:723 ; Mathematics:921
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259880
专题工学院_力学与航空航天工程系
作者单位
1.Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
2.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
3.Peking Univ, Coll Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
4.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
5.Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
推荐引用方式
GB/T 7714
Li, Haochen,Zhao, Yaomin,Wang, Jianchun,et al. Data-driven model development for large-eddy simulation of turbulence using gene-expression programing[J]. PHYSICS OF FLUIDS,2021,33(12).
APA
Li, Haochen,Zhao, Yaomin,Wang, Jianchun,&Sandberg, Richard D..(2021).Data-driven model development for large-eddy simulation of turbulence using gene-expression programing.PHYSICS OF FLUIDS,33(12).
MLA
Li, Haochen,et al."Data-driven model development for large-eddy simulation of turbulence using gene-expression programing".PHYSICS OF FLUIDS 33.12(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Haochen]的文章
[Zhao, Yaomin]的文章
[Wang, Jianchun]的文章
百度学术
百度学术中相似的文章
[Li, Haochen]的文章
[Zhao, Yaomin]的文章
[Wang, Jianchun]的文章
必应学术
必应学术中相似的文章
[Li, Haochen]的文章
[Zhao, Yaomin]的文章
[Wang, Jianchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。