中文版 | English
题名

Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review

作者
通讯作者Liu,Quanying
发表日期
2022-02-15
DOI
发表期刊
ISSN
0165-0270
EISSN
1872-678X
卷号368
摘要
Machine learning is playing an increasingly important role in medical image analysis, spawning new advances in the clinical application of neuroimaging. There have been some reviews on machine learning and epilepsy before, and they mainly focused on electrophysiological signals such as electroencephalography (EEG) and stereo electroencephalography (SEEG), while neglecting the potential of neuroimaging in epilepsy research. Neuroimaging has its important advantages in confirming the range of the epileptic region, which is essential in presurgical evaluation and assessment after surgery. However, it is difficult for EEG to locate the accurate epilepsy lesion region in the brain. In this review, we emphasize the interaction between neuroimaging and machine learning in the context of epilepsy diagnosis and prognosis. We start with an overview of epilepsy and typical neuroimaging modalities used in epilepsy clinics, MRI, DWI, fMRI, and PET. Then, we elaborate two approaches in applying machine learning methods to neuroimaging data: (i) the conventional machine learning approach combining manual feature engineering and classifiers, (ii) the deep learning approach, such as the convolutional neural networks and autoencoders. Subsequently, the application of machine learning on epilepsy neuroimaging, such as segmentation, localization, and lateralization tasks, as well as tasks directly related to diagnosis and prognosis are looked into in detail. Finally, we discuss the current achievements, challenges, and potential future directions in this field, hoping to pave the way for computer-aided diagnosis and prognosis of epilepsy.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62001205] ; Guangdong Natural Science Founda-tion Joint Fund[2019A1515111038] ; Shenzhen Science and Technol-ogy Innovation Committee[20200925155957004,"KCXFZ2020122117340001","SGDX2020110309280100"] ; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS20200811144003009]
WOS研究方向
Biochemistry & Molecular Biology ; Neurosciences & Neurology
WOS类目
Biochemical Research Methods ; Neurosciences
WOS记录号
WOS:000788155700006
出版者
ESI学科分类
NEUROSCIENCE & BEHAVIOR
Scopus记录号
2-s2.0-85121915671
来源库
Scopus
引用统计
被引频次[WOS]:27
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259916
专题工学院_生物医学工程系
作者单位
1.Shenzhen Key Laboratory of Smart Healthcare Engineering,Department of Biomedical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Shenzhen Second People's Hospital,Shenzhen,518035,China
3.Shenzhen Children's Hospital,Shenzhen,518017,China
4.Centre for Cognitive and Brain Sciences and Department of Psychology,University of Macau,Taipa,Macao
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Yuan,Jie,Ran,Xuming,Liu,Keyin,et al. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review[J]. JOURNAL OF NEUROSCIENCE METHODS,2022,368.
APA
Yuan,Jie.,Ran,Xuming.,Liu,Keyin.,Yao,Chen.,Yao,Yi.,...&Liu,Quanying.(2022).Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review.JOURNAL OF NEUROSCIENCE METHODS,368.
MLA
Yuan,Jie,et al."Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: A review".JOURNAL OF NEUROSCIENCE METHODS 368(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1016@j.jneumeth.2(2006KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan,Jie]的文章
[Ran,Xuming]的文章
[Liu,Keyin]的文章
百度学术
百度学术中相似的文章
[Yuan,Jie]的文章
[Ran,Xuming]的文章
[Liu,Keyin]的文章
必应学术
必应学术中相似的文章
[Yuan,Jie]的文章
[Ran,Xuming]的文章
[Liu,Keyin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1016@j.jneumeth.2021.109441.pdf
格式: Adobe PDF
文件名: 10.1016@j.jneumeth.2021.109441.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。