题名 | Quantum algorithms for the generalized eigenvalue problem |
作者 | |
通讯作者 | Liang,Jin Min |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1570-0755
|
EISSN | 1573-1332
|
卷号 | 21期号:1 |
摘要 | The generalized eigenvalue (GE) problems are of particular importance in various areas of science engineering and machine learning. We present a variational quantum algorithm for finding the desired generalized eigenvalue of the GE problem, A| ψ⟩ = λB| ψ⟩ , by choosing suitable loss functions. Our approach imposes the superposition of the trial state and the obtained eigenvectors with respect to the weighting matrix B on the Rayleigh quotient. Furthermore, both the values and derivatives of the loss functions can be calculated on near-term quantum devices with shallow quantum circuit. Finally, we propose a full quantum generalized eigensolver (FQGE) to calculate the minimal generalized eigenvalue with quantum gradient descent algorithm. As a demonstration of the principle, we numerically implement our algorithms to conduct a 2-qubit simulation and successfully find the generalized eigenvalues of the matrix pencil (A,B). The numerically experimental result indicates that FQGE is robust under Gaussian noise. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
EI入藏号 | 20215211406704
|
EI主题词 | Eigenvalues and eigenfunctions
; Gaussian noise (electronic)
; Gradient methods
|
EI分类号 | Numerical Methods:921.6
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85121806144
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/259929 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.School of Mathematical Science,Capital Normal University,Beijing,10048,China 2.College of Science,China University of Petroleum,Qingdao,266580,China 3.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
推荐引用方式 GB/T 7714 |
Liang,Jin Min,Shen,Shu Qian,Li,Ming,et al. Quantum algorithms for the generalized eigenvalue problem[J]. Quantum Information Processing,2022,21(1).
|
APA |
Liang,Jin Min,Shen,Shu Qian,Li,Ming,&Fei,Shao Ming.(2022).Quantum algorithms for the generalized eigenvalue problem.Quantum Information Processing,21(1).
|
MLA |
Liang,Jin Min,et al."Quantum algorithms for the generalized eigenvalue problem".Quantum Information Processing 21.1(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1007@s11128-021-0(623KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论