中文版 | English
题名

Constructing shear velocity models from surface wave dispersion curves using deep learning

作者
通讯作者Luo,Yinhe
发表日期
2022
DOI
发表期刊
ISSN
0926-9851
卷号196
摘要
Surface wave tomography has been widely used to determine shear wave velocities by inverting surface wave dispersion curves. Conventional least-squares inversions strongly depend on an initial model and Monte Carlo inversion algorithms are usually time-consuming. In this study, we apply a deep neural network (DNN) to surface wave dispersion curves to investigate whether the initial model can be relaxed and whether reliable shear velocity models can be constructed. By applying our method to synthetic and field data, our results show that: (1) by constructing a well-trained DNN model from the global continental CRUST1.0 data, the DNN approach is effective and efficient to determine shear velocity structures using Rayleigh wave dispersion curves; (2) using the well-trained DNN model, no prior model is required, relaxing the requirement of an initial model; (3) the well-trained DNN model can be used to construct pseudo 3D seismic models across different continental areas.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2017YFC1500302];National Natural Science Foundation of China[41874058];National Natural Science Foundation of China[42074055];
EI入藏号
20215211401460
EI主题词
Dispersion (waves) ; Shear flow ; Shear waves ; Surface waves ; Tomography ; Velocity
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Fluid Flow, General:631.1 ; Imaging Techniques:746 ; Mechanics:931.1
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85121732221
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259934
专题理学院_地球与空间科学系
作者单位
1.Hubei Subsurface Multi-scale Imaging Key Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan,430074,China
2.State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan,430074,China
3.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Luo,Yinhe,Huang,Yao,Yang,Yingjie,et al. Constructing shear velocity models from surface wave dispersion curves using deep learning[J]. JOURNAL OF APPLIED GEOPHYSICS,2022,196.
APA
Luo,Yinhe,Huang,Yao,Yang,Yingjie,Zhao,Kaifeng,Yang,Xiaozhou,&Xu,Hongrui.(2022).Constructing shear velocity models from surface wave dispersion curves using deep learning.JOURNAL OF APPLIED GEOPHYSICS,196.
MLA
Luo,Yinhe,et al."Constructing shear velocity models from surface wave dispersion curves using deep learning".JOURNAL OF APPLIED GEOPHYSICS 196(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo,Yinhe]的文章
[Huang,Yao]的文章
[Yang,Yingjie]的文章
百度学术
百度学术中相似的文章
[Luo,Yinhe]的文章
[Huang,Yao]的文章
[Yang,Yingjie]的文章
必应学术
必应学术中相似的文章
[Luo,Yinhe]的文章
[Huang,Yao]的文章
[Yang,Yingjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。