题名 | Constructing shear velocity models from surface wave dispersion curves using deep learning |
作者 | |
通讯作者 | Luo,Yinhe |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0926-9851
|
卷号 | 196 |
摘要 | Surface wave tomography has been widely used to determine shear wave velocities by inverting surface wave dispersion curves. Conventional least-squares inversions strongly depend on an initial model and Monte Carlo inversion algorithms are usually time-consuming. In this study, we apply a deep neural network (DNN) to surface wave dispersion curves to investigate whether the initial model can be relaxed and whether reliable shear velocity models can be constructed. By applying our method to synthetic and field data, our results show that: (1) by constructing a well-trained DNN model from the global continental CRUST1.0 data, the DNN approach is effective and efficient to determine shear velocity structures using Rayleigh wave dispersion curves; (2) using the well-trained DNN model, no prior model is required, relaxing the requirement of an initial model; (3) the well-trained DNN model can be used to construct pseudo 3D seismic models across different continental areas. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Key Research and Development Program of China[2017YFC1500302];National Natural Science Foundation of China[41874058];National Natural Science Foundation of China[42074055];
|
EI入藏号 | 20215211401460
|
EI主题词 | Dispersion (waves)
; Shear flow
; Shear waves
; Surface waves
; Tomography
; Velocity
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Fluid Flow, General:631.1
; Imaging Techniques:746
; Mechanics:931.1
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85121732221
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/259934 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Hubei Subsurface Multi-scale Imaging Key Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan,430074,China 2.State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan,430074,China 3.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Luo,Yinhe,Huang,Yao,Yang,Yingjie,et al. Constructing shear velocity models from surface wave dispersion curves using deep learning[J]. JOURNAL OF APPLIED GEOPHYSICS,2022,196.
|
APA |
Luo,Yinhe,Huang,Yao,Yang,Yingjie,Zhao,Kaifeng,Yang,Xiaozhou,&Xu,Hongrui.(2022).Constructing shear velocity models from surface wave dispersion curves using deep learning.JOURNAL OF APPLIED GEOPHYSICS,196.
|
MLA |
Luo,Yinhe,et al."Constructing shear velocity models from surface wave dispersion curves using deep learning".JOURNAL OF APPLIED GEOPHYSICS 196(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论