中文版 | English
题名

Adaptive Initialization Method for K-Means Algorithm

作者
发表日期
2021-11-25
DOI
发表期刊
EISSN
2624-8212
卷号4
摘要
The K-means algorithm is a widely used clustering algorithm that offers simplicity and efficiency. However, the traditional K-means algorithm uses a random method to determine the initial cluster centers, which make clustering results prone to local optima and then result in worse clustering performance. In this research, we propose an adaptive initialization method for the K-means algorithm (AIMK) which can adapt to the various characteristics in different datasets and obtain better clustering performance with stable results. For larger or higher-dimensional datasets, we even leverage random sampling in AIMK (name as AIMK-RS) to reduce the time complexity. 22 real-world datasets were applied for performance comparisons. The experimental results show AIMK and AIMK-RS outperform the current initialization methods and several well-known clustering algorithms. Specifically, AIMK-RS can significantly reduce the time complexity to O (n). Moreover, we exploit AIMK to initialize K-medoids and spectral clustering, and better performance is also explored. The above results demonstrate superior performance and good scalability by AIMK or AIMK-RS. In the future, we would like to apply AIMK to more partition-based clustering algorithms to solve real-life practical problems.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
Australian Research Council (ARC)["DP180100656","DP210101093"] ; Australia Defence Innovation Hub[P18-650825] ; US Office of Naval Research Global[ONRG-NICOP-N62909-19-1-2058] ; AFOSR - DST Australian Autonomy Initiative[10134] ; NSW Defence Innovation Network["DINPP2019 S1-03/09","PP21-22.03.02"] ; NSW State Government of Australia["DINPP2019 S1-03/09","PP21-22.03.02"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:000751704800155
出版者
Scopus记录号
2-s2.0-85120959965
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259992
专题工学院_计算机科学与工程系
作者单位
1.Computational Intelligence and Brain Computer Interface Lab,Australian Artificial Intelligence Institute,FEIT,University of Technology Sydney,Sydney,Australia
2.Shenzhen Key Laboratory of Computational Intelligence,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.CERCIA,School of Computer Science,University of Birmingham,Birmingham,United Kingdom
推荐引用方式
GB/T 7714
Yang,Jie,Wang,Yu Kai,Yao,Xin,et al. Adaptive Initialization Method for K-Means Algorithm[J]. Frontiers in Artificial Intelligence,2021,4.
APA
Yang,Jie,Wang,Yu Kai,Yao,Xin,&Lin,Chin Teng.(2021).Adaptive Initialization Method for K-Means Algorithm.Frontiers in Artificial Intelligence,4.
MLA
Yang,Jie,et al."Adaptive Initialization Method for K-Means Algorithm".Frontiers in Artificial Intelligence 4(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Jie]的文章
[Wang,Yu Kai]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Yang,Jie]的文章
[Wang,Yu Kai]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Yang,Jie]的文章
[Wang,Yu Kai]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。