中文版 | English
题名

Gated Channel Attention Network for Cataract Classification on AS-OCT Image

作者
通讯作者Higashita,Risa
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
13110 LNCS
页码
357-368
摘要
Nuclear cataract (NC) is the leading cause of blindness and vision impairment globally. Accurate NC classification is significant for clinical NC diagnosis. Anterior segment optical coherence tomography (AS-OCT) is a non-contact, high-resolution, objective imaging technique, which is widely used in diagnosing ophthalmic diseases. Clinical studies have shown that there is a significant correlation between the pixel density of the lens region on AS-OCT images and NC severity levels; however, automatic NC classification on AS-OCT images has not been seriously studied. Motivated by clinical research, this paper proposes a gated channel attention network (GCA-Net) to classify NC severity levels automatically. In the GCA-Net, we design a gated channel attention block by fusing the clinical priority knowledge, in which a gated layer is designed to filter out abundant features and a Softmax layer is used to build the weakly interacting for channels. We use a clinical AS-OCT image dataset to demonstrate the effectiveness of our GCA-Net. The results showed that the proposed GCA-Net achieves 94.3% in accuracy and outperformed strong baselines and state-of-the-art attention-based networks.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20220111413432
EI主题词
Computer aided diagnosis ; Deep learning ; Image classification ; Medical imaging ; Optical tomography
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85121922028
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/259994
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Tomey Corporation,Nagoya,Japan
3.Zhongshan Ophthalmic Center,Sun Yat-sen University,Guangzhou,China
4.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
5.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
6.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xiao,Zunjie,Zhang,Xiaoqing,Higashita,Risa,et al. Gated Channel Attention Network for Cataract Classification on AS-OCT Image[C],2021:357-368.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Zunjie]的文章
[Zhang,Xiaoqing]的文章
[Higashita,Risa]的文章
百度学术
百度学术中相似的文章
[Xiao,Zunjie]的文章
[Zhang,Xiaoqing]的文章
[Higashita,Risa]的文章
必应学术
必应学术中相似的文章
[Xiao,Zunjie]的文章
[Zhang,Xiaoqing]的文章
[Higashita,Risa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。