题名 | Hierarchical Features Integration and Attention Iteration Network for Juvenile Refractive Power Prediction |
作者 | |
通讯作者 | Liu,Jiang |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 13109 LNCS
|
页码 | 479-490
|
摘要 | Refraction power has been accredited as one of the significant indicators for the myopia detection in clinical medical practice. Standard refraction power acquirement technique based on cycloplegic autorefraction needs to induce with specific medicine lotions, which may cause side-effects and sequelae for juvenile students. Besides, several fundus lesions and ocular disorders will degenerate the performance of the objective measurement of the refraction power due to equipment limitations. To tackle these problems, we firstly propose a novel hierarchical features integration method and an attention iteration network to automatically obtain the refractive power by reasoning from relevant biomarkers. In our method, hierarchical features integration is used to generate ensembled features of different levels. Then, an end-to-end deep neural network is designed to encode the feature map in parallel and exploit an inter-scale attentive parallel module to enhance the representation through an up-bottom fusion path. The experiment results have demonstrated that the proposed approach is superior to other baselines in the refraction power prediction task, which could further be clinically deployed to assist the ophthalmologists and optometric physicians to infer the related ocular disease progression. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20220111413177
|
EI主题词 | Deep neural networks
; Integration
; Iterative methods
; Refraction
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Calculus:921.2
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85121921026
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/259995 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.University of Technology Sydney,Sydney,Australia 3.Tomey Corporation,Nagoya,Japan 4.Xiao Ai Eye Clinic,Chengdu,China 5.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Beijing,China 6.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China 7.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Yang,Higashita,Risa,Long,Guodong,et al. Hierarchical Features Integration and Attention Iteration Network for Juvenile Refractive Power Prediction[C],2021:479-490.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论