题名 | Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system |
作者 | |
发表日期 | 2021-06-23
|
DOI | |
发表期刊 | |
ISSN | 0272-4979
|
EISSN | 1464-3642
|
卷号 | 0期号:0页码:1-35 |
摘要 | We analyze a fully discrete finite element numerical scheme for the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty associated with the coupling between the Cahn-Hilliard equation and the fluid motion, we make use of the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn would greatly improve the computational efficiency. The unique solvability and the energy stability have been proved in Chen et al. (2017, Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry. Numer. Math., 137, 229-255). In this work, we carry out a detailed convergence analysis and error estimate for the fully discrete finite element scheme, so that the optimal rate convergence order is established in the energy norm, i.e., in the l(infinity) (0, T; H1)boolean AND l(2)(0, T; H-2) norm for the phase variables, as well as in the l(infinity) (0, T; H1)boolean AND l(2)(0, T; H-2) norm for the velocity variable. Such an energy norm error estimate leads to a cancelation of a nonlinear error term associated with the convection part, which turns out to be a key step to pass through the analysis. In addition, a discrete l(2)(0; T; H-3) bound of the numerical solution for the phase variables plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo-Nirenberg inequality in the finite element setting. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Key R&D Program of China[2019YFA0709502]
; National Science Foundation of China[12071090,11871159]
; National Science Foundation[
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000755795600001
|
出版者 | |
EI入藏号 | 20223312559684
|
EI主题词 | Computational efficiency
; Estimation
; Finite element method
; Porous materials
; Two phase flow
|
EI分类号 | Fluid Flow, General:631.1
; Mathematics:921
; Numerical Methods:921.6
; Materials Science:951
|
ESI学科分类 | MATHEMATICS
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/260239 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) 理学院_深圳国家应用数学中心 |
作者单位 | 1.School of Mathematical Sciences, Fudan University, Shanghai 200433, China 2.Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USA 3.Department of Mathematics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA 4.Department of Mathematics, SUSTech International Center for Mathematics, National Center for Applied Mathematics Shenzhen, Guangdong Provincial Key Laboratory of Computational Sicience and Material Design, Southern University of Science and Technology, Shenzhen 518055, China |
推荐引用方式 GB/T 7714 |
Wenbin,Chen,Shufen,Wang,Yichao,Zhang,等. Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2021,0(0):1-35.
|
APA |
Wenbin,Chen,Shufen,Wang,Yichao,Zhang,Daozhi,Han,Cheng,Wang,&Xiaoming,Wang.(2021).Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system.IMA JOURNAL OF NUMERICAL ANALYSIS,0(0),1-35.
|
MLA |
Wenbin,Chen,et al."Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system".IMA JOURNAL OF NUMERICAL ANALYSIS 0.0(2021):1-35.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1093@imanum@drab0(1195KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论