中文版 | English
题名

Data-driven polynomial chaos expansions: A weighted least-square approximation

作者
通讯作者Zhou, Tao
发表日期
2019-03-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号381页码:129-145
摘要
In this work, we combine the idea of data-driven polynomial chaos expansions with the weighted least-square approach to solve uncertainty quantification (UQ) problems. The idea of data-driven polynomial chaos is to use statistical moments of the input random variables to develop an arbitrary polynomial chaos expansion, and then use such data-driven bases to perform UQ computations. Here we adopt the bases construction procedure by following (Ahlfeld et al. (2016), [1]), where the bases are computed by using matrix operations on the Hankel matrix of moments. Different from previous works, in the postprocessing part, we propose a weighted least-squares approach to solve UQ problems. This approach includes a sampling strategy and a least-squares solver. The main features of our approach are two folds: On one hand, our sampling strategy is independent of the random input. More precisely, we propose to sampling with the equilibrium measure, and this measure is also independent of the data-driven bases. Thus, this procedure can be done in prior (or in a off-line manner). On the other hand, we propose to solve a Christoffel function weighted least-square problem, and this strategy is quasi-linearly stable - the required number of PDE solvers depends linearly (up to a logarithmic factor) on the number of (data-driven) bases. This new approach is thus promising in dealing with a class of problems with epistemic uncertainties. A number of numerical tests are presented to show the effectiveness of our approach. (C) 2019 Elsevier Inc. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
national key basic research program[2018YFB0704304]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000458147100008
出版者
EI入藏号
20201708548405
EI主题词
Expansion ; Polynomial approximation ; Sampling ; Matrix algebra ; Uncertainty analysis
EI分类号
Algebra:921.1 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Materials Science:951
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26248
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Guo, Ling,Liu, Yongle,Zhou, Tao. Data-driven polynomial chaos expansions: A weighted least-square approximation[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2019,381:129-145.
APA
Guo, Ling,Liu, Yongle,&Zhou, Tao.(2019).Data-driven polynomial chaos expansions: A weighted least-square approximation.JOURNAL OF COMPUTATIONAL PHYSICS,381,129-145.
MLA
Guo, Ling,et al."Data-driven polynomial chaos expansions: A weighted least-square approximation".JOURNAL OF COMPUTATIONAL PHYSICS 381(2019):129-145.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo, Ling]的文章
[Liu, Yongle]的文章
[Zhou, Tao]的文章
百度学术
百度学术中相似的文章
[Guo, Ling]的文章
[Liu, Yongle]的文章
[Zhou, Tao]的文章
必应学术
必应学术中相似的文章
[Guo, Ling]的文章
[Liu, Yongle]的文章
[Zhou, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。