题名 | A hybrid model of fuzzy min-max and brain storm optimization for feature selection and data classification |
作者 | |
通讯作者 | Pourpanan, Farhad |
发表日期 | 2019-03-14
|
DOI | |
发表期刊 | |
ISSN | 0925-2312
|
EISSN | 1872-8286
|
卷号 | 333页码:440-451 |
摘要 | Swarm intelligence (SI)-based optimization methods have been extensively used to tackle feature selection problems. A feature selection method extracts the most significant features and removes irrelevant ones from the data set, in order to reduce feature dimensionality and improve the classification accuracy. This paper combines the incremental learning Fuzzy Min-Max (FMM) neural network and Brain Storm Optimization (BSO) to undertake feature selection and classification problems. Firstly, FMM is used to create a number of hyperboxes incrementally. BSO, which is inspired by the human brainstorming process, is then employed to search for an optimal feature subset. Ten benchmark problems and a real-world case study are conducted to evaluate the effectiveness of the proposed FMM-BSO. In addition, the bootstrap method with the 95% confidence intervals is used to quantify the results statistically. The experimental results indicate that FMM-BSO is able to produce promising results as compared with those from the original FMM network and other state-of-the-art feature selection methods such as particle swarm optimization, genetic algorithm, and ant lion optimization. (C) 2019 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Natural Science Foundation of Shenzhen University[827-000140]
; Natural Science Foundation of Shenzhen University[827-000230]
; Natural Science Foundation of Shenzhen University[2017060]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000456834100040
|
出版者 | |
EI入藏号 | 20190306396938
|
EI主题词 | Fault detection
; Feature extraction
; Genetic algorithms
; Particle swarm optimization (PSO)
; Statistical methods
; Storms
|
EI分类号 | Precipitation:443.3
; Information Theory and Signal Processing:716.1
; Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Mathematical Statistics:922.2
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:45
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26255 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Shenzhen Univ, Coll Math & Stat, Shenzhen, Guangdong, Peoples R China 2.Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic, Australia 3.Shenzhen Univ, Guang Dong Key Lab Intelligent Informat Proc, Coll Comp Sci & Software Engn, Shenzhen, Guangdong, Peoples R China 4.Wawasan Open Univ, Sch Sci & Technol, George Town, Penang, Malaysia 5.Swinburne Univ Technol, Fac Engn Comp & Sci, Sarawak Campus, Kuching, Sarawak, Malaysia 6.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Pourpanan, Farhad,Lim, Chee Peng,Wang, Xizhao,et al. A hybrid model of fuzzy min-max and brain storm optimization for feature selection and data classification[J]. NEUROCOMPUTING,2019,333:440-451.
|
APA |
Pourpanan, Farhad,Lim, Chee Peng,Wang, Xizhao,Tan, Choo Jun,Seera, Manjeevan,&Shi, Yuhui.(2019).A hybrid model of fuzzy min-max and brain storm optimization for feature selection and data classification.NEUROCOMPUTING,333,440-451.
|
MLA |
Pourpanan, Farhad,et al."A hybrid model of fuzzy min-max and brain storm optimization for feature selection and data classification".NEUROCOMPUTING 333(2019):440-451.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论