中文版 | English
题名

Multi-Level Classification Based on Trajectory Features of Time Series for Monitoring Impervious Surface Expansions

作者
通讯作者Chen, Zhenjie
发表日期
2019-03-02
DOI
发表期刊
ISSN
2072-4292
EISSN
2072-4292
卷号11期号:6
摘要
As urbanization has profound effects on global environmental changes, quick and accurate monitoring of the dynamic changes in impervious surfaces is of great significance for environmental protection. The increased spatiotemporal resolution of imagery makes it possible to construct time series to obtain long-time-period and high-accuracy information about impervious surface expansion. In this study, a three-step monitoring method based on time series trajectory segmentation was developed to extract impervious surface expansion using Landsat time series and was applied to the Xinbei District, Changzhou, China, from 2005 to 2017. Firstly, the original time series was segmented and fitted to remove the noise caused by clouds, shadows, and interannual differences, leaving only the trend information. Secondly, the time series trajectory features of impervious surface expansion were described using three phases and four types with nine parameters by analyzing the trajectory characteristics. Thirdly, a multi-level classification method was used to determine the scope of impervious surface expansion, and the expansion time was superimposed to obtain a spatiotemporal distribution map. The proposed method yielded an overall accuracy of 90.58% and a Kappa coefficient of 0.90, demonstrating that Landsat time series remote sensing images could be used effectively in this approach to monitor the spatiotemporal expansion of impervious surfaces.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[41571378]
WOS研究方向
Remote Sensing
WOS类目
Remote Sensing
WOS记录号
WOS:000465615300039
出版者
EI入藏号
20213910955334
EI主题词
Remote sensing ; Support vector machines ; Time series ; Trajectories
EI分类号
Computer Software, Data Handling and Applications:723 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Mathematical Statistics:922.2 ; Systems Science:961
来源库
Web of Science
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26283
专题南方科技大学
人文社会科学学院_社会科学中心暨社会科学高等研究院
作者单位
1.Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Jiangsu, Peoples R China
2.Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
3.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
4.Univ Wisconsin, Dept Geog, Madison, WI 53706 USA
5.Southern Univ Sci & Technol, Ctr Social Sci, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Wang, Beibei,Chen, Zhenjie,Zhu, A-Xing,et al. Multi-Level Classification Based on Trajectory Features of Time Series for Monitoring Impervious Surface Expansions[J]. Remote Sensing,2019,11(6).
APA
Wang, Beibei,Chen, Zhenjie,Zhu, A-Xing,Hao, Yuzhu,&Xu, Changqing.(2019).Multi-Level Classification Based on Trajectory Features of Time Series for Monitoring Impervious Surface Expansions.Remote Sensing,11(6).
MLA
Wang, Beibei,et al."Multi-Level Classification Based on Trajectory Features of Time Series for Monitoring Impervious Surface Expansions".Remote Sensing 11.6(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Beibei]的文章
[Chen, Zhenjie]的文章
[Zhu, A-Xing]的文章
百度学术
百度学术中相似的文章
[Wang, Beibei]的文章
[Chen, Zhenjie]的文章
[Zhu, A-Xing]的文章
必应学术
必应学术中相似的文章
[Wang, Beibei]的文章
[Chen, Zhenjie]的文章
[Zhu, A-Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。