中文版 | English
题名

Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems

作者
通讯作者Kazimipour, Borhan
发表日期
2019-03
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号76页码:265-281
摘要
This paper addresses the issue of computational resource allocation within the context of cooperative coevolution. Cooperative coevolution typically works by breaking a problem down into smaller subproblems (or components) and coevolving them in a round-robin fashion, resulting in a uniform resource allocation among its components. Despite its success on a wide range of problems, cooperative coevolution struggles to perform efficiently when its components do not contribute equally to the overall objective value. This is of crucial importance on large-scale optimization problems where such difference are further magnified. To resolve this imbalance problem, we extend the standard cooperative coevolution to a new generic framework capable of learning the contribution of each component using multi-armed bandit techniques. The new framework allocates the computational resources to each component proportional to their contributions towards improving the overall objective value. This approach results in a more economical use of the limited computational resources. We study different aspects of the proposed framework in the light of extensive experiments. Our empirical results confirm that even a simple banditbased credit assignment scheme can significantly improve the performance of cooperative coevolution on large-scale continuous problems, leading to competitive performance as compared to the state-of-the-art algorithms. (C) 2018 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000461145200019
出版者
EI入藏号
20185206317260
EI主题词
Optimization
EI分类号
Management:912.2 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26348
专题工学院_计算机科学与工程系
作者单位
1.Sch Sci Comp Sci & Software Engn, Melbourne, Vic 3000, Australia
2.Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
3.Swinburne Univ Technol, Dept Comp Sci & Software Engn, John St, Hawthorn, Vic 3122, Australia
4.Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Univ Key Lab Evolving Intelligent Syst Guangdong, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Kazimipour, Borhan,Omidvar, Mohammad Nabi,Qin, A. K.,et al. Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems[J]. APPLIED SOFT COMPUTING,2019,76:265-281.
APA
Kazimipour, Borhan,Omidvar, Mohammad Nabi,Qin, A. K.,Li, Xiaodong,&Yao, Xin.(2019).Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems.APPLIED SOFT COMPUTING,76,265-281.
MLA
Kazimipour, Borhan,et al."Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems".APPLIED SOFT COMPUTING 76(2019):265-281.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Kazimipour-2019-Band(1529KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kazimipour, Borhan]的文章
[Omidvar, Mohammad Nabi]的文章
[Qin, A. K.]的文章
百度学术
百度学术中相似的文章
[Kazimipour, Borhan]的文章
[Omidvar, Mohammad Nabi]的文章
[Qin, A. K.]的文章
必应学术
必应学术中相似的文章
[Kazimipour, Borhan]的文章
[Omidvar, Mohammad Nabi]的文章
[Qin, A. K.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。