题名 | Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems |
作者 | |
通讯作者 | Kazimipour, Borhan |
发表日期 | 2019-03
|
DOI | |
发表期刊 | |
ISSN | 1568-4946
|
EISSN | 1872-9681
|
卷号 | 76页码:265-281 |
摘要 | This paper addresses the issue of computational resource allocation within the context of cooperative coevolution. Cooperative coevolution typically works by breaking a problem down into smaller subproblems (or components) and coevolving them in a round-robin fashion, resulting in a uniform resource allocation among its components. Despite its success on a wide range of problems, cooperative coevolution struggles to perform efficiently when its components do not contribute equally to the overall objective value. This is of crucial importance on large-scale optimization problems where such difference are further magnified. To resolve this imbalance problem, we extend the standard cooperative coevolution to a new generic framework capable of learning the contribution of each component using multi-armed bandit techniques. The new framework allocates the computational resources to each component proportional to their contributions towards improving the overall objective value. This approach results in a more economical use of the limited computational resources. We study different aspects of the proposed framework in the light of extensive experiments. Our empirical results confirm that even a simple banditbased credit assignment scheme can significantly improve the performance of cooperative coevolution on large-scale continuous problems, leading to competitive performance as compared to the state-of-the-art algorithms. (C) 2018 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000461145200019
|
出版者 | |
EI入藏号 | 20185206317260
|
EI主题词 | Optimization
|
EI分类号 | Management:912.2
; Optimization Techniques:921.5
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:19
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26348 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Sch Sci Comp Sci & Software Engn, Melbourne, Vic 3000, Australia 2.Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England 3.Swinburne Univ Technol, Dept Comp Sci & Software Engn, John St, Hawthorn, Vic 3122, Australia 4.Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Univ Key Lab Evolving Intelligent Syst Guangdong, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Kazimipour, Borhan,Omidvar, Mohammad Nabi,Qin, A. K.,et al. Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems[J]. APPLIED SOFT COMPUTING,2019,76:265-281.
|
APA |
Kazimipour, Borhan,Omidvar, Mohammad Nabi,Qin, A. K.,Li, Xiaodong,&Yao, Xin.(2019).Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems.APPLIED SOFT COMPUTING,76,265-281.
|
MLA |
Kazimipour, Borhan,et al."Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems".APPLIED SOFT COMPUTING 76(2019):265-281.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Kazimipour-2019-Band(1529KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论