题名 | Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates |
作者 | Yan, Tongxing1,2,3 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
通讯作者 | Yung, Man-Hong; Chen, Yuanzhen; Yung, Man-Hong; Chen, Yuanzhen; Yung, Man-Hong; Chen, Yuanzhen |
发表日期 | 2019-02-25
|
DOI | |
发表期刊 | |
ISSN | 0031-9007
|
EISSN | 1079-7114
|
卷号 | 122期号:8 |
摘要 | When a quantum system is driven slowly through a parametric cycle in a degenerate Hilbert space, the state would acquire a non-Abelian geometric phase, which is stable and forms the foundation for holonomic quantum computation (HQC). However, in the adiabatic limit, the environmental decoherence becomes a significant source of errors. Recently, various nonadiabatic holonomic quantum computation (NHQC) schemes have been proposed, but all at the price of increased sensitivity to control errors. Alternatively, there exist theoretical proposals for speeding up HQC by the technique of " shortcut to adiabaticity" (STA), but no experimental demonstration has been reported so far, as these proposals involve a complicated control of four energy levels simultaneously. Here, we propose and experimentally demonstrate that HQC via shortcut to adiabaticity can be constructed with only three energy levels, using a superconducting qubit in a scalable architecture. With this scheme, all holonomic single-qubit operations can be realized nonadiabatically through a single cycle of state evolution. As a result, we are able to experimentally benchmark the stability of STA thorn HQC against NHQC in the same platform. The flexibility and simplicity of our scheme makes it also implementable on other systems, such as nitrogen-vacancy center, quantum dots, and nuclear magnetic resonance. Finally, our scheme can be extended to construct two-qubit holonomic entangling gates, leading to a universal set of STAHQC gates. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 第一
; 通讯
|
资助项目 | Science Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376]
; Science Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170817105046702]
; Science Technology and Innovation Commission of Shenzhen Municipality[ZDSYS201703031659262]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000459919700001
|
出版者 | |
EI入藏号 | 20191006589918
|
EI主题词 | Quantum Optics
; Semiconductor Quantum Dots
|
EI分类号 | Semiconductor Devices And Integrated Circuits:714.2
; Light/optics:741.1
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:129
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26390 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 3.Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China 4.Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China 5.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 6.Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China 7.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China 8.Huawei Technol, Cent Res Inst, Shenzhen 518129, Peoples R China 9.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 10.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 11.Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China 12.Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China 13.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 14.Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China 15.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China 16.Huawei Technol, Cent Res Inst, Shenzhen 518129, Peoples R China 17.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 18.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 19.Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China 20.Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China 21.Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 22.Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China 23.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China 24.Huawei Technol, Cent Res Inst, Shenzhen 518129, Peoples R China |
第一作者单位 | 量子科学与工程研究院; 物理系 |
通讯作者单位 | 量子科学与工程研究院; 物理系 |
第一作者的第一单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Yan, Tongxing,Liu, Bao-Jie,Xu, Kai,et al. Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates[J]. PHYSICAL REVIEW LETTERS,2019,122(8).
|
APA |
Yan, Tongxing.,Liu, Bao-Jie.,Xu, Kai.,Song, Chao.,Liu, Song.,...&Yu, Dapeng.(2019).Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates.PHYSICAL REVIEW LETTERS,122(8).
|
MLA |
Yan, Tongxing,et al."Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates".PHYSICAL REVIEW LETTERS 122.8(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Yan-2019-Experimenta(948KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论