中文版 | English
题名

Online algorithm configuration for differential evolution algorithm

作者
通讯作者Yao, Xin
发表日期
2022
DOI
发表期刊
ISSN
0924-669X
EISSN
1573-7497
卷号52页码:9193-9211
摘要

The performance of evolutionary algorithms (EAs) is strongly affected by their configurations. Thus, algorithm configuration (AC) problem, that is, to properly set algorithm's configuration, including the operators and parameter values for maximizing the algorithm's performance on given problem(s) is an essential and challenging task in the design and application of EAs. In this paper, an online algorithm configuration (OAC) approach is proposed for differential evolution (DE) algorithm to adapt its configuration in a data-driven way. In our proposed OAC, the multi-armed bandit algorithm is adopted to select trial vector generation strategies for DE, and the kernel density estimation method is used to adapt the associated control parameters during the evolutionary search process. The performance of DE algorithm using the proposed OAC (OAC-DE) is evaluated on a benchmark set of 30 bound-constrained numerical optimization problems and compared with several adaptive DE variants. Besides, the influence of OAC's hyper-parameter on its performance is analyzed. The comparison results show OAC-DE achieves better average performance than the compared algorithms, which validates the effectiveness of the proposed OAC. The sensitivity analysis indicates that the hyper-parameter of OAC has little impact on OAC-DE's performance.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Basic and Applied Basic Research Foundation[2019A1515110575] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Shenzhen Basic Research Program[JCYJ20180504165652917] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000737094100001
出版者
EI入藏号
20220111429782
EI主题词
Benchmarking ; Constrained optimization ; E-learning ; Machine learning ; Parameter estimation ; Sensitivity analysis ; Statistics
EI分类号
Mathematics:921 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/264221
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
2.INSA Rouen Normandie, Lab Mech Normandy LMN, F-76000 Rouen, France
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Huang, Changwu,Bai, Hao,Yao, Xin. Online algorithm configuration for differential evolution algorithm[J]. APPLIED INTELLIGENCE,2022,52:9193-9211.
APA
Huang, Changwu,Bai, Hao,&Yao, Xin.(2022).Online algorithm configuration for differential evolution algorithm.APPLIED INTELLIGENCE,52,9193-9211.
MLA
Huang, Changwu,et al."Online algorithm configuration for differential evolution algorithm".APPLIED INTELLIGENCE 52(2022):9193-9211.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Online algorithm con(1090KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Changwu]的文章
[Bai, Hao]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Huang, Changwu]的文章
[Bai, Hao]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Huang, Changwu]的文章
[Bai, Hao]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。