题名 | Online algorithm configuration for differential evolution algorithm |
作者 | |
通讯作者 | Yao, Xin |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0924-669X
|
EISSN | 1573-7497
|
卷号 | 52页码:9193-9211 |
摘要 | The performance of evolutionary algorithms (EAs) is strongly affected by their configurations. Thus, algorithm configuration (AC) problem, that is, to properly set algorithm's configuration, including the operators and parameter values for maximizing the algorithm's performance on given problem(s) is an essential and challenging task in the design and application of EAs. In this paper, an online algorithm configuration (OAC) approach is proposed for differential evolution (DE) algorithm to adapt its configuration in a data-driven way. In our proposed OAC, the multi-armed bandit algorithm is adopted to select trial vector generation strategies for DE, and the kernel density estimation method is used to adapt the associated control parameters during the evolutionary search process. The performance of DE algorithm using the proposed OAC (OAC-DE) is evaluated on a benchmark set of 30 bound-constrained numerical optimization problems and compared with several adaptive DE variants. Besides, the influence of OAC's hyper-parameter on its performance is analyzed. The comparison results show OAC-DE achieves better average performance than the compared algorithms, which validates the effectiveness of the proposed OAC. The sensitivity analysis indicates that the hyper-parameter of OAC has little impact on OAC-DE's performance. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2019A1515110575]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
; Shenzhen Basic Research Program[JCYJ20180504165652917]
; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000737094100001
|
出版者 | |
EI入藏号 | 20220111429782
|
EI主题词 | Benchmarking
; Constrained optimization
; E-learning
; Machine learning
; Parameter estimation
; Sensitivity analysis
; Statistics
|
EI分类号 | Mathematics:921
; Mathematical Statistics:922.2
; Systems Science:961
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/264221 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China 2.INSA Rouen Normandie, Lab Mech Normandy LMN, F-76000 Rouen, France |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Huang, Changwu,Bai, Hao,Yao, Xin. Online algorithm configuration for differential evolution algorithm[J]. APPLIED INTELLIGENCE,2022,52:9193-9211.
|
APA |
Huang, Changwu,Bai, Hao,&Yao, Xin.(2022).Online algorithm configuration for differential evolution algorithm.APPLIED INTELLIGENCE,52,9193-9211.
|
MLA |
Huang, Changwu,et al."Online algorithm configuration for differential evolution algorithm".APPLIED INTELLIGENCE 52(2022):9193-9211.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Online algorithm con(1090KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论