中文版 | English
题名

A Novel and High-Accuracy Rumor Detection Approach using Kernel Subtree and Deep Learning Networks

作者
通讯作者Wei, Ziyu
DOI
发表日期
2021
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
页码
1-8
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Rumor detection is a task of identifying information that spread among people whose truth value is false or unverified, and it has been a great challenge due to the rapid development of social media. The traditional machine learning based detection methods can make full use of informative features but cannot extract high-level representations. Other methods involved deep learning neural networks exploit propagation structural information to achieve high accuracy, for example, Bi-Directional Graph Convolution Networks(BiGCN) achieved the best performance on rumor detection by operating on bottom-up and top-down structures. However, those deep learning methods ignore other useful features like content-based features. In this paper, we not only make full use of three aspects of features based on a new concept: kernel subtree, which focus more on informative features of influential nodes of an event, but also propose a new model, which consists of Separation Convolution blocks, Long Short Term Memory(LSTM) and Squeeze and Excitation Networks(SENet), to make comprehensive use of features extracted on the basis of kernel subtree. First, we utilize Separation Convolutions to learn more local information with different kernel size, then LSTM can learn high-level interactions among features and find more global information. After that, SENet applies attention mechanism to put more weights on informative channels of feature maps. Meanwhile, on test set, Gradient Boosting Decision Tree(GBDT) is used to assist our model with few events. The experiments on the PHEME dataset show that our approach can identify rumors with accuracy 95% which outperforms BiGCN by 10% at least.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Program of China["2018YFB1800204","2018YFB1800601"] ; National Natural Science Foundation of China[61972219] ; RD Program of Shenzhen["JCYJ20190813174403598","SGDX20190918101201696"] ; National Natural Science Foundation of Guangdong Province[2018A030313422]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581708006
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9534311
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/264260
专题南方科技大学
作者单位
1.Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
2.Peng Cheng Lab, Beijing, Peoples R China
3.Shenzhen Inst Informat Technol, Shenzhen, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wei, Ziyu,Xiao, Xi,Hu, Guangwu,et al. A Novel and High-Accuracy Rumor Detection Approach using Kernel Subtree and Deep Learning Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei, Ziyu]的文章
[Xiao, Xi]的文章
[Hu, Guangwu]的文章
百度学术
百度学术中相似的文章
[Wei, Ziyu]的文章
[Xiao, Xi]的文章
[Hu, Guangwu]的文章
必应学术
必应学术中相似的文章
[Wei, Ziyu]的文章
[Xiao, Xi]的文章
[Hu, Guangwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。