题名 | Wnt5a/Ryk信号参与骨癌痛的外周机制 |
其他题名 | WNT5A/RYK SIGNALING UNDERLYING THE PERIPHERAL MECHANISM OF BONE CANCER PAIN
|
姓名 | |
姓名拼音 | Zhai Mingzhu
|
学号 | 11749321
|
学位类型 | 博士
|
学位专业 | 083100 生物医学工程
|
学科门类/专业学位类别 | 07 理学
|
导师 | |
导师单位 | 医学神经科学系
|
论文答辩日期 | 2021-11-16
|
论文提交日期 | 2022-01-14
|
学位授予单位 | 哈尔滨工业大学
|
学位授予地点 | 深圳
|
摘要 | 随着全球癌症发病率的不断增高和癌症的慢性化趋势,治疗癌性疼痛的医疗需求及相关经济负担也日益增加。骨癌痛是由原发性骨肿瘤或肿瘤继发骨转移引起的临床最为常见的癌性疼痛类型。骨癌痛及其伴随的高钙血症、病理性骨折、易感染等情况不但严重影响患者的生活质量,而且给家庭和社会带来沉重的心理、经济和财政负担。目前临床上用于治疗癌性疼痛的药物包括世界卫生组织推荐的阿片类药物等对中、重度疼痛的治疗效果欠佳,无法达到充分缓解疼痛的目的,且大都存在安全性、成瘾性和药物耐受等方面的问题及严重的不良反应和其他副作用。因此,阐明癌性疼痛的发生发展机制,探索有效的防治措施是非常紧迫的科研和医疗任务。解决这一难题具有重要的学术和医疗价值,在挽救生命、维护人类健康等方面有着重大而深远的社会意义。 癌性疼痛发生发展的主要原因包括如下四个方面:1)肿瘤源性的分泌物介导的伤害性感受;2)骨质溶解导致的疼痛;3)肿瘤导致的神经损伤;4)神经系统的敏化与重构。这些改变使得外周神经末梢、初级感觉神经元的胞体和中枢突的兴奋性异常增高,脊髓以及更高级中枢信息传递的突触可塑性长期增强,从而导致外周痛觉感受器敏化和痛觉中枢敏化。但是,癌性疼痛发生发展的具体细胞和分子机制仍然很不清楚。 本文聚焦于研究骨癌痛发生和发展的外周神经机制,研究内容主要包括以下三个方面:1)通过转录组测序技术阐明骨癌痛发生发展不同阶段背根节中转录组学改变的特点,并比较不同慢性痛模型(炎性痛、神经病理性痛和骨癌痛)之间转录组差异改变的异同;2)初步阐明Wnt 信号家族β-catenin非依赖性信号通路在疼痛的初级传入感觉神经元(背根神经节)和外周神经末梢中的活动状况,及其和骨癌痛发生发展的相互关系;3)探索Wnt5a/Ryk信号在外周水平调控初级感觉神经元胞内钙活动及外周伤害性感受的离子通道机制。 本文采用RAN-seq技术研究了骨癌痛发生发展过程中背根节的转录组改变,并探讨了以离子通道和细胞因子改变为代表的神经病理性和炎症性特征在骨癌痛发生发展不同阶段的动态变化。研究结果显示骨癌引起背根节中数千个基因的表达发生改变,这些基因主要涉及免疫过程、炎症反应和细胞因子的胞内信号转导,且这些改变与骨癌痛的发展高度同步。其中,离子通道基因的改变有助于骨癌痛早期发生,而细胞因子信号通路相关基因的改变则有助于骨癌痛的维持。本文还比较了不同疼痛模型(炎性痛、神经病理性痛和骨癌痛)之间背根节中的转录组改变的差异。研究结果显示不同模型之间共享的基因很少,表明不同形式的疼痛发病机理有所不同。这部分的研究结论强调了细胞因子相关通路及免疫与炎症因素在骨癌痛发展中扮演的重要角色,以及不同疼痛模型之间发病机制的特殊性。此外,本文进一步研究了以Wnt5a/Ryk信号为代表的Wnt非经典通路在骨癌痛发展和维持中的作用和细胞及分子机制。结果显示外周Wnt5a/Ryk信号在骨癌痛的发展中被激活;其对大鼠背根节神经元的胞内钙活动和疼痛行为有显著的调控作用;抑制Wnt5a/Ryk信号可以显著缓解骨癌引起的疼痛行为。这部分的研究结论强调了外周Wnt5a/Ryk信号在热痛觉过敏和骨癌痛的发展中的重要作用。在机制研究中,结果显示外周Wnt5a/Ryk信号调控背根节中TRPV1的表达水平和JNK2/3的磷酸化水平;Wnt5a/Ryk/JNK信号通路调控TRPV1依赖的背根节神经元胞内钙活动和外周伤害性感受。本文提出了Wnt5a/Ryk信号通过调控外周神经系统中TRPV1离子通道的表达和活性从而调控背根节神经元中的中、小细胞胞内钙活动和大鼠热痛敏行为的观点,并初步探讨了背根节中JNK的磷酸化在介导Wnt5a/Ryk信号和调节TRPV1依赖的背根节神经元胞内钙活动中的作用。这些成果为后续研究骨癌痛的外周机制提供了理论和实验基础,也为临床治疗骨癌痛提供了新的潜在分子靶标。 |
其他摘要 | With the increasing incidence of cancer and the trend of chronic cancer worldwide, the medical needs and related financial burdens for the treatment of cancer pain are also increasing. Bone Cancer Pain (BCP) in the clinic is the most common type of cancer pain caused by primary bone sarcomas or secondary bone metastases from non-bone cancer. BCP and its accompanying hypercalcemia, pathological fractures, susceptibility to infection not only seriously affect patients’ life quality, but also bring heavy psychological, economic, and financial burdens to the family and society. The currently available clinical medication for the treatment of cancer pain is not enough effective in the treatment of moderate and severe pain, while most of the drugs have safety, addiction, and drug tolerance problems, e.g., serious adverse reactions, and other side effects. Therefore, scientific research and medical tasks including clarifying the mechanism of generation and development of cancer pain and exploring effective approaches for prevention and treatment are urgently needed. Solving these problems has important academic and medical value as well as great social significance in saving lives and maintaining human health. The hypotheses of previous studies explaining the mechanism of the generation and development of cancer pain mainly include: 1) nociception mediated by tumor-derived secretions; 2) pain induced by osteolysis; 3) nerve damage caused by tumor growth, and 4) sensitization and reconstruction of the nervous system. These changes induce the increased abnormal excitability of peripheral nerve endings, cell bodies, and central processes of primary sensory neurons, and the long-term potentiation of the synaptic plasticity of the spinal cord and higher brain centers involved in pain information transmission, which leads to the sensitization of peripheral nociceptors and central sensitization. However, the cellular and molecular mechanisms of the generation and development of cancer pain remain unclear. This research focuses on understanding the peripheral mechanisms involved in the development of BCP. The main findings include threefold. First, we have clarified the characteristics of transcriptomic changes in the dorsal root ganglion (DRG) at different stages of development of bone cancer pain and compared the similarity and uniqueness of transcriptome differences among different chronic pain models including inflammatory pain, neuropathic pain, and BCP. Second, we have demonstrated the critical role of Wnt β-catenin-independent signaling within the dorsal root ganglion (DRG) including its peripheral terminals, and its contribution to the development of BCP. Third, we have demonstrated the regulatory effect of Wnt5a/Ryk/JNK signaling on intracellular calcium activity. We employed the RNA-seq technology to clarify the total transcriptomic changes at different stages of development of BCP and explored the dynamic changes of neuropathological features represented by ion channels and the inflammatory features represented by cytokines in BCP. Our results show that bone cancer cause alterations in the expression of thousands of genes in the DRG. These genes are mainly involved in the immune process, inflammatory response, and intracellular signal transduction of cytokines, and these alterations are highly synchronized to the development of BCP. Among them, the alterations of ion channel genes contribute to the early occurrence of BCP and the alterations of genes of cytokine signaling pathway contribute to the maintenance of BCP. We also compared the differences in transcriptome alterations in the DRG between different pain models. The results show that there are few genes shared between different pain models, indicating that the pathogeneses of different forms of pain are different. The conclusions of this part of the research emphasize the important role of cytokine-related pathways and immune and inflammatory factors in the development of BCP, as well as the uniqueness of the pathogeneses of different pain models. In addition, we have further studied the role and cellular and molecular mechanisms of Wnt non-canonical pathways represented by Wnt5a/Ryk signaling in the development and maintenance of BCP. We found that the peripheral Wnt5a/Ryk signal is activated during the development of BCP, which has a significant regulatory effect on the intracellular calcium activity of rat DRG neurons and pain behavior. Inhibition of the Wnt5a/Ryk signal can significantly alleviate painful behavior caused by bone cancer. The conclusions of this part of the study emphasize the important role of peripheral Wnt5a/Ryk signaling in the development of thermal hyperalgesia and BCP. In the mechanism study, we found that the peripheral Wnt5a/Ryk signaling regulates the expression level of TRPV1 and the phosphorylation level of JNK2/3 in the DRG, and Wnt5a/Ryk/JNK signaling pathway regulates the TRPV1-dependent intracellular calcium activity of small and medium DRG neurons and peripheral nociception. We proposed that Wnt5a/Ryk signal regulates the expression and activity of TRPV1 ion channels in the peripheral nervous system to trigger the intracellular calcium activity in DRG neurons and thermal hyperalgesia in rats. In addition, we have preliminary explored the role of JNK phosphorylation in DRG in mediating Wnt5a/Ryk signaling and regulating TRPV1-dependent intracellular calcium activity of DRG neurons. These findings provide a theoretical and experimental basis for the follow-up study of the peripheral mechanism of BCP and also provide new potential molecular targets for the clinical treatment of BCP. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 联合培养
|
入学年份 | 2017
|
学位授予年份 | 2022
|
参考文献列表 | [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71 (3): 209-249. [2] AIELLI F, PONZETTI M, RUCCI N. Bone metastasis pain, from the bench to the bedside[J]. Int J Mol Sci, 2019, 20 (2): 280. [3] BREIVIK H, CHERNY N, COLLETT B, et al. Cancer-related pain: a pan-European survey of prevalence, treatment, and patient attitudes[J]. Ann Oncol, 2009, 20 (8): 1420-33. [4] MAGEE D, BACHTOLD S, BROWN M, et al. Cancer pain: where are we now?[J]. Pain Manag, 2019, 9 (1): 63-79. [5] HOWARD A, BRANT J M. Pharmacologic management of cancer pain[J]. Semin Oncol Nurs, 2019, 35 (3): 235-240. [6] GOBLIRSCH M J, ZWOLAK P P, CLOHISY D R. Biology of bone cancer pain[J]. Clin Cancer Res, 2006, 12 (20): 6231-6235. [7] TAHARA R K, BREWER T M, THERIAULT R L, et al. Bone metastasis of breast cancer[J]. Adv Exp Med Biol, 2019, 1152 (1): 105-129. [8] MERCADANTE S, FULFARO F. Management of painful bone metastases[J]. Curr Opin Oncol, 2007, 19 (4): 308-14. [9] CLOHISY D R, LE C T, CHENG E Y, et al. Evaluation of the feasibility of and results of measuring health-status changes in patients undergoing surgical treatment for skeletal metastases[J]. J Orthop Res, 2000, 18 (1): 1-9. [10] LEWINGTON V J. Bone-seeking radionuclides for therapy[J]. J Nucl Med, 2005, 46 (1): 38-47. [11] ZAJACZKOWSKA R, KOCOT-KEPSKA M, LEPPERT W, et al. Bone pain in cancer patients: mechanisms and current treatment[J]. Int J Mol Sci, 2019, 20 (23): 6047. [12] NOMIYA T, TERUYAMA K, WADA H, et al. Time course of pain relief in patients treated with radiotherapy for cancer pain: a prospective study[J]. Clin J Pain, 2010, 26 (1): 38-42. [13] GIAMMARILE F, MOGNETTI T, RESCHE I. Bone pain palliation with strontium-89 in cancer patients with bone metastases[J]. Q J Nucl Med, 2001, 45 (1): 78-83. [14] MCQUAY H J, COLLINS S L, CARROLL D, et al. Radiotherapy for the palliation of painful bone metastases[J].Cochrane Database Syst Rev, 2013, 2013 (11): 1793. [15] GOBLIRSCH M, LYNCH C, MATHEWS W, et al. Radiation treatment decreases bone cancer pain through direct effect on tumor cells[J]. Radiat Res, 2005, 164 (4): 400-8. [16] VIT J P, OHARA P T, TIEN D A, et al. The analgesic effect of low dose focal irradiation in a mouse model of bone cancer is associated with spinal changes in neuro-mediators of nociception[J]. Pain, 2006, 120 (1): 188-201. [17] DELANEY A, FLEETWOOD-WALKER S M, COLVIN L A, et al. Translational medicine: cancer pain mechanisms and management[J]. Br J Anaesth, 2008, 101 (1): 87-94. [18] O'TOOLE G C, BOLAND P. Metastatic bone cancer pain: etiology and treatment options[J]. Curr Pain Headache Rep, 2006, 10 (4): 288-92. [19] SCARBOROUGH B M, SMITH C B. Optimal pain management for patients with cancer in the modern era[J].CA Cancer J Clin, 2018, 68 (3): 182-196. [20] SHAPPELL S B, MANNING S, BOEGLIN W E, et al. Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma[J]. Neoplasia, 2001, 3 (4): 287-303. [21] SABINO M A, GHILARDI J R, JONGEN J L, et al. Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2[J]. Cancer Res, 2002, 62 (24): 7343-9. [22] THUN M J, HENLEY S J, PATRONO C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues[J]. J Natl Cancer Inst, 2002, 94 (4): 252-66. [23] DAVIS M P, WALSH D, LAGMAN R, et al. Controversies in pharmacotherapy of pain management[J]. Lancet Oncol, 2005, 6 (9): 696-704. [24] MENENDEZ L, LASTRA A, HIDALGO A, et al. Peripheral opioids act as analgesics in bone cancer pain in mice[J]. Neuroreport, 2003, 14 (6): 867-9. [25] WIFFEN P J, WEE B, DERRY S, et al. Opioids for cancer pain - an overview of Cochrane reviews[J].Cochrane Database Syst Rev, 2017, 7 (1): 12592. [26] YAMAMOTO J, KAWAMATA T, NIIYAMA Y, et al. Down-regulation of mu opioid receptor expression within distinct subpopulations of dorsal root ganglion neurons in a murine model of bone cancer pain[J].Neuroscience, 2008, 151 (3): 843-53. [27] JUBA K M, WAHLER R G, DARON S M. Morphine and hydromorphone-induced hyperalgesia in a hospice patient[J]. J Palliat Med, 2013, 16 (7): 809-12. [28] KING T, VARDANYAN A, MAJUTA L, et al. Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer[J]. Pain, 2007, 132 (1-2): 154-68. [29] GOLDVASER H, AMIR E. Role of bisphosphonates in breast cancer therapy[J]. Curr Treat Options Oncol, 2019, 20 (4): 26. [30] BARON R, FERRARI S, RUSSELL R G. Denosumab and bisphosphonates: different mechanisms of action and effects[J]. Bone, 2011, 48 (4): 677-92. [31] SAITO O, AOE T, KOZIKOWSKI A, et al. Ketamine and N-acetylaspartyl-glutamate peptidase inhibitor exert analgesia in bone cancer pain[J]. Can J Anaesth, 2006, 53 (9): 891-8. [32] DAVAR G. Endothelin-1 and metastatic cancer pain[J]. Pain Med, 2001, 2 (1): 24-7. [33] HALVORSON K G, KUBOTA K, SEVCIK M A, et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone[J]. Cancer Res, 2005, 65 (20): 9426-35. [34] NIIYAMA Y, KAWAMATA T, YAMAMOTO J, et al. Bone cancer increases transient receptor potential vanilloid subfamily 1 expression within distinct subpopulations of dorsal root ganglion neurons[J]. Neuroscience, 2007, 148 (2): 560-72. [35] SINDHI V, ERDEK M. Interventional treatments for metastatic bone cancer pain[J]. Pain Manag, 2019, 9 (3): 307-315. [36] SMITH T J, STAATS P S, DEER T, et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival[J]. J Clin Oncol, 2002, 20 (19): 4040-9. [37] MIGUEL R. Interventional treatment of cancer pain: the fourth step in the World Health Organization analgesic ladder?[J]. Cancer Control, 2000, 7 (2): 149-56. [38] DEER T R, LEVY R M, KRAMER J, et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial[J]. Pain, 2017, 158 (4): 669-681. [39] ZAPOROWSKA-STACHOWIAK I, LUCZAK J, HOFFMANN K, et al. Managing metastatic bone pain: new perspectives, different solutions[J]. Biomed Pharmacother, 2017, 93 (1): 1277-1284. [40] CALLSTROM M R, DUPUY D E, SOLOMON S B, et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial[J]. Cancer, 2013, 119 (5): 1033-41. [41] FALK S, DICKENSON A H. Pain and nociception: mechanisms of cancer-induced bone pain[J]. J Clin Oncol, 2014, 32 (16): 1647-54. [42] REICHLING D B, LEVINE J D. Critical role of nociceptor plasticity in chronic pain[J]. Trends Neurosci, 2009, 32 (12): 611-8. [43] LUGER N M, MACH D B, SEVCIK M A, et al. Bone cancer pain: from model to mechanism to therapy[J]. J Pain Symptom Manage, 2005, 29 (5): 32-46. [44] SABINO M A, MANTYH P W. Pathophysiology of bone cancer pain[J]. J Support Oncol, 2005, 3 (1): 15-24. [45] MACH D B, ROGERS S D, SABINO M C, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur[J]. Neuroscience, 2002, 113 (1): 155-66. [46] PETERS C M, GHILARDI J R, KEYSER C P, et al. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain[J]. Exp Neurol, 2005, 193 (1): 85-100. [47] CLOHISY D R, MANTYH P W. Bone cancer pain[J]. Cancer, 2003, 97 (3): 866-73. [48] CAIN D M, WACNIK P W, TURNER M, et al. Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain[J]. J Neurosci, 2001, 21 (23): 9367-76. [49] KHASABOV S G, HAMAMOTO D T, HARDING-ROSE C, et al. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain[J]. Brain Res, 2007, 1180 (1): 7-19. [50] SABINO M A, LUGER N M, MACH D B, et al. Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system[J]. Int J Cancer, 2003, 104 (5): 550-8. [51] URCH E C, DONOVAN-RODRIGUEZ T, DICKENSON H A. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain[J]. Pain, 2003, 106 (3): 347-356. [52] TETI A, ZALLONE A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited[J].Bone, 2009, 44 (1): 11-6. [53] ELIASSON P, JONSSON J I. The hematopoietic stem cell niche: low in oxygen but a nice place to be[J]. J Cell Physiol, 2010, 222 (1): 17-22. [54] QIU F, WEI X, ZHANG S, et al. Increased expression of acid-sensing ion channel 3 within dorsal root ganglia in a rat model of bone cancer pain[J]. Neuroreport, 2014, 25 (12): 887-93. [55] DEVAL E, GASULL X, NOEL J, et al. Acid-sensing ion channels (ASICs): pharmacology and implication in pain[J]. Pharmacol Ther, 2010, 128 (3): 549-58. [56] HIASA M, OKUI T, ALLETTE Y M, et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3[J]. Cancer Res, 2017, 77 (6): 1283-1295. [57] CARATTINO M D, MONTALBETTI N. Acid-sensing ion channels in sensory signaling[J]. Am J Physiol Renal Physiol, 2020, 318 (3): 531-543. [58] NIIYAMA Y, KAWAMATA T, YAMAMOTO J, et al. SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain[J]. Br J Anaesth, 2009, 102 (2): 251-8. [59] DI POMPO G, LEMMA S, CANTI L, et al. Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma[J]. Oncotarget, 2017, 8 (33): 54478-54496. [60] HONORE P, LUGER N M, SABINO M A, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord[J]. Nat Med, 2000, 6 (5): 521-8. [61] FIGURA N, SMITH J, YU H M. Mechanisms of, and adjuvants for, bone pain[J]. Hematol Oncol Clin North Am, 2018, 32 (3): 447-458. [62] BAAMONDE A, CURTO-REYES V, JUAREZ L, et al. Antihyperalgesic effects induced by the IL-1 receptor antagonist anakinra and increased IL-1beta levels in inflamed and osteosarcoma-bearing mice[J]. Life Sci, 2007, 81 (8): 673-82. [63] CONSTANTIN C E, MAIR N, SAILER C A, et al. Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model[J]. J Neurosci, 2008, 28 (19): 5072-81. [64] HU J H, ZHENG X Y, YANG J P, et al. Involvement of spinal monocyte chemoattractant protein-1 (MCP-1) in cancer-induced bone pain in rats[J]. Neurosci Lett, 2012, 517 (1): 60-3. [65] GADEPALLI A, AKHILESH, UNIYAL A, et al. Multifarious targets and recent developments in the therapeutics for the management of bone cancer pain[J]. ACS Chem Neurosci, 2021, 12 (22): 4195-4208. [66] TOCCI P, BLANDINO G, BAGNATO A. YAP and endothelin-1 signaling: an emerging alliance in cancer[J]. J Exp Clin Cancer Res, 2021, 40 (1): 27. [67] HAN M M, YANG C W, CHEUNG C W, et al. Blockage of spinal endothelin A receptors attenuates bone cancer pain via regulation of the Akt/ERK signaling pathway in mice[J]. Neuropeptides, 2018, 68 (1): 36-42. [68] SKAPER S D. The neurotrophin family of neurotrophic factors: an overview[J]. Methods Mol Biol, 2012, 846 (1): 1-12. [69] BUEHLMANN D, IELACQUA G D, XANDRY J, et al. Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice[J]. Pain, 2019, 160 (1): 151-159. [70] WANG L N, YANG J P, JI F H, et al. Brain-derived neurotrophic factor modulates N-methyl-D-aspartate receptor activation in a rat model of cancer-induced bone pain[J]. J Neurosci Res, 2012, 90 (6): 1249-60. [71] HONDERMARCK H. Neurotrophins and their receptors in breast cancer[J]. Cytokine Growth Factor Rev, 2012, 23 (6): 357-65. [72] WILLIAMS K S, KILLEBREW D A, CLARY G P, et al. Differential regulation of macrophage phenotype by mature and pro-nerve growth factor[J]. J Neuroimmunol, 2015, 285 (1): 76-93. [73] ZHANG X C, KAINZ V, BURSTEIN R, et al. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions[J]. Pain, 2011, 152 (1): 140-149. [74] CATERINA M J, LEFFLER A, MALMBERG A B, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science, 2000, 288 (5464): 306-13. [75] BREUKSCH I, WEINERT M, BRENNER W. The role of extracellular calcium in bone metastasis[J]. J Bone Oncol, 2016, 5 (3): 143-145. [76] XU Q, ZHANG X M, DUAN K Z, et al. Peripheral TGF-β1 signaling is a critical event in bone cancer-induced hyperalgesia in rodents[J]. J Neurosci, 2013, 33 (49): 19099-111. [77] LI Y, CAI J, HAN Y, et al. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain[J]. Eur J Pain, 2014, 18 (6): 774-84. [78] GIULIANI A L, SARTI A C, DI VIRGILIO F. Extracellular nucleotides and nucleosides as signallingmolecules[J].Immunol Lett, 2019, 205 (1): 16-24. [79] KAAN T K, YIP P K, PATEL S, et al. Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats[J]. Brain, 2010, 133 (9): 2549-64. [80] HANSEN R R, NASSER A, FALK S, et al. Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice[J]. Eur J Pharmacol, 2012, 688 (1): 27-34. [81] DELGADO-CALLE J, ANDERSON J, CREGOR M D, et al. Genetic deletion of Sost or pharmacological inhibition of sclerostin prevent multiple myeloma-induced bone disease without affecting tumor growth[J].Leukemia, 2017, 31 (12): 2686-2694. [82] WANG K, GU Y, LIAO Y, et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain[J]. J Clin Invest, 2020, 130 (7): 3603-3620. [83] FUERER C, NUSSE R, TEN BERGE D. Wnt signalling in development and disease[J]. EMBO Rep, 2008, 9 (2): 134-8. [84] BUDNIK V, SALINAS P C. Wnt signaling during synaptic development and plasticity[J]. Curr Opin Neurobiol, 2011, 21 (1): 151-9. [85] OLIVA C A, VARGAS J Y, INESTROSA N C. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies[J]. Front Cell Neurosci, 2013, 7 (1): 224. [86] ZIMMERMAN Z F, MOON R T, CHIEN A J. Targeting Wnt pathways in disease[J]. Cold Spring Harb Perspect Biol, 2012, 4 (11). [87] ARNES M, CASAS TINTO S. Aberrant Wnt signaling: a special focus in CNS diseases[J]. J Neurogenet, 2017, 31 (4): 216-222. [88] NUSSE R, CLEVERS H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169 (6): 985-999. [89] ROY J P, HALFORD M M, STACKER S A. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases[J]. Growth Factors, 2018, 36 (1): 15-40. [90] SPAAN I, RAYMAKERS R A, VAN DE STOLPE A, et al. Wnt signaling in multiple myeloma: a central player in disease with therapeutic potential[J]. J Hematol Oncol, 2018, 11 (1): 67. [91] NIEHRS C. The complex world of WNT receptor signalling[J]. Nat Rev Mol Cell Biol, 2012, 13 (12): 767-79. [92] MCLEOD F, SALINAS P C. Wnt proteins as modulators of synaptic plasticity[J]. Curr Opin Neurobiol, 2018, 53 (1): 90-95. [93] LIU Y, SHI J, LU C C, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract[J]. Nat Neurosci, 2005, 8 (9): 1151-9. [94] HOLLIS E R, 2ND, ZOU Y. Reinduced Wnt signaling limits regenerative potential of sensory axons in the spinal cord following conditioning lesion[J]. Proc Natl Acad Sci U S A, 2012, 109 (36): 14663-8. [95] ZHANG Y K, HUANG Z J, LIU S, et al. WNT signaling underlies the pathogenesis of neuropathic pain in rodents[J]. J Clin Invest, 2013, 123 (5): 2268-86. [96] SIMONETTI M, HAGENSTON A M, VARDEH D, et al. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain[J]. Neuron, 2013, 77 (1): 43-57. [97] YUAN S B, JI G, LI B, et al. A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain[J].Pain, 2015, 156 (7): 1311-1319. [98] ZHU A, SHEN L, XU L, et al. Wnt5a mediates chronic post-thoracotomy pain by regulating non-canonical pathways, nerve regeneration, and inflammation in rats[J]. Cell Signal, 2018, 44 (1): 51-61. [99] YUAN S, SHI Y, TANG S J. Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain[J].J Neuroimmune Pharmacol, 2012, 7 (4): 904-13. [100] SIMONETTI M, KUNER R. Spinal Wnt5a plays a key role in spinal dendritic spine remodeling in neuropathic and inflammatory pain models and in the proalgesic effects of peripheral Wnt3a[J]. J Neurosci, 2020, 40 (35): 6664-6677. [101] YANG Q O, YANG W J, LI J, et al. Ryk receptors on unmyelinated nerve fibers mediate excitatory synaptic transmission and CCL2 release during neuropathic pain induced by peripheral nerve injury[J]. Mol Pain, 2017, 13: 174480691-7709372. [102] ZHOU X L, ZHANG C J, PENG Y N, et al. ROR2 modulates neuropathic pain via phosphorylation of NMDA receptor subunit GluN2B in rats[J]. Br J Anaesth, 2019, 123 (2): 239-248. [103] LIU S, LIU Y P, HUANG Z J, et al. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats[J]. Pain, 2015, 156 (12): 2572-2584. [104] NIE X, LIU H, LIU L, et al. Emerging roles of Wnt ligands in human colorectal cancer[J]. Front Oncol, 2020, 10 (1): 1341. [105] LI S J, YANG X N, QIAN H Y. Antitumor effects of WNT2B silencing in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma[J]. Am J Cancer Res, 2015, 5 (1): 300-8. [106] LIU C, LI G, YANG N, et al. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma[J]. Cancer Cell Int, 2017, 17 (1): 2. [107] LEE G T, KWON S J, KIM J, et al. WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages[J]. Br J Cancer, 2018, 118 (5): 670-678. [108] REN D, DAI Y, YANG Q, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone[J]. J Exp Med, 2019, 216 (2): 428-449. [109] HE J J, WANG X, LIANG C, et al. Wnt5b/Ryk-mediated membrane trafficking of P2X3 receptors contributes to bone cancer pain[J]. Exp Neurol, 2020, 334 (1): 113482. [110] BERTA T, QADRI Y, TAN P H, et al. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain[J]. Expert Opin Ther Targets, 2017, 21 (7): 695-703. [111] LIU S, LV Y, WAN X X, et al. Hedgehog signaling contributes to bone cancer pain by regulating sensory neuron excitability in rats[J]. Mol Pain, 2018, 14: 1744806918767560. [112] LIU S, LIU Y P, LV Y, et al. IL-18 contributes to bone cancer pain by regulating glia cells and neuron interaction[J].J Pain, 2018, 19 (2): 186-195. [113] CHAPLAN S R, BACH F W, POGREL J W, et al. Quantitative assessment of tactile allodynia in the rat paw[J]. J Neurosci Methods, 1994, 53 (1): 55-63. [114] WANG Y, YAN Q, ZHAO Y, et al. Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice[J]. JCI Insight, 2019, 4 (22): 131692. [115] LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10 (3): 25. [116] LI B, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12 (1): 323. [117] YU G, WANG L G, HAN Y, et al. ClusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16 (5): 284-7. [118] WU J X, XU M Y, MIAO X R, et al. Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain[J]. Eur J Pain, 2012, 16 (10): 1378-88. [119] QIU F, JIANG Y, ZHANG H, et al. Increased expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 within dorsal root ganglia in a rat model of bone cancer pain[J]. Neurosci Lett, 2012, 512 (2): 61-6. [120] ZHOU Y Q, LIU Z, LIU H Q, et al. Targeting glia for bone cancer pain[J]. Expert Opin Ther Targets, 2016, 20 (11): 1365-1374. [121] ZHOU Y Q, LIU Z, LIU Z H, et al. Interleukin-6: an emerging regulator of pathological pain[J]. J Neuroinflammation, 2016, 13 (1): 141. [122] ZHU G Q, LIU S, HE D D, et al. Activation of the cAMP-PKA signaling pathway in rat dorsal root ganglion and spinal cord contributes toward induction and maintenance of bone cancer pain[J]. Behav Pharmacol, 2014, 25 (4): 267-76. [123] GUAN X, FU Q, XIONG B, et al. Activation of PI3Kγ/Akt pathway mediates bone cancer pain in rats[J]. J Neurochem, 2015, 134 (3): 590-600. [124] HUANG Y. Expression of BDNF in dorsal root ganglion of rats with bone cancer pain and its effect on pain behavior[J]. J Musculoskelet Neuronal Interact, 2018, 18 (1): 42-46. [125] FANG D, KONG L Y, CAI J, et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: roles in the development of bone cancer pain in a rat model[J]. Pain, 2015, 156 (6): 1124-44. [126] FERRARI L F, KHOMULA E V, ARALDI D, et al. Marked sexual dimorphism in the role of the ryanodine receptor in a model of pain chronification in the rat[J]. Sci Rep, 2016, 6 (1): 31221. [127] HEINE S, MICHALAKIS S, KALLENBORN-GERHARDT W, et al. CNGA3: a target of spinal nitric oxide/cGMP signaling and modulator of inflammatory pain hypersensitivity[J]. J Neurosci, 2011, 31 (31): 11184-92. [128] MA C, ROSENZWEIG J, ZHANG P, et al. Expression of inwardly rectifying potassium channels by an inducible adenoviral vector reduced the neuronal hyperexcitability and hyperalgesia produced by chronic compression of the spinal ganglion[J]. Mol Pain, 2010, 6 (1): 65. [129] TODAKA H, TANIGUCHI J, SATOH J, et al. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia[J]. J Biol Chem, 2004, 279 (34): 35133-8. [130] CAO F, GAO F, XU A J, et al. Regulation of spinal neuroimmune responses by prolonged morphine treatment in a rat model of cancer induced bone pain[J]. Brain Res, 2010, 1326 (1): 162-73. [131] SUN W, KOU D, YU Z, et al. A transcriptomic analysis of neuropathic pain in rat dorsal root ganglia following peripheral nerve injury[J]. Neuromolecular Med, 2020, 22 (2): 250-263. [132] CHANG M, SMITH S, THORPE A, et al. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping[J]. Mol Pain, 2010, 6 (1): 56. [133] GARCIA-DOMINGUEZ M, LASTRA A, FOLGUERAS A R, et al. The chemokine CCL4 (MIP-1β) evokes antinociceptive effects in mice: a role for CD4(+) lymphocytes and met-enkephalin[J]. Mol Neurobiol, 2019, 56 (3): 1578-1595. [134] HANG L H, SHAO D H, CHEN Z, et al. Involvement of spinal CC chemokine ligand 5 in the development of bone cancer pain in rats[J]. Basic Clin Pharmacol Toxicol, 2013, 113 (5): 325-8. [135] PEVIDA M, LASTRA A, MEANA A, et al. The chemokine CCL5 induces CCR1-mediated hyperalgesia in mice inoculated with NCTC 2472 tumoral cells[J]. Neuroscience, 2014, 259 (1): 113-25. [136] BU H L, XIA Y Z, LIU P M, et al. The roles of chemokine CXCL13 in the development of bone cancer pain and the regulation of morphine analgesia in rats[J]. Neuroscience, 2019, 406 (1): 62-72. [137] HUO W, ZHANG Y, LIU Y, et al. Dehydrocorydaline attenuates bone cancer pain by shifting microglial M1/M2 polarization toward the M2 phenotype[J]. Mol Pain, 2018, 14: 1744806918781733. [138] APRYANI E, ALI U, WANG Z Y, et al. The spinal microglial IL-10/β-endorphin pathway accounts for cinobufagin-induced mechanical antiallodynia in bone cancer pain following activation of α7-nicotinic acetylcholine receptors[J]. J Neuroinflammation, 2020, 17 (1): 75. [139] HIRTH M, GANDLA J, HOPER C, et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients[J]. Gastro-enterology, 2020, 159 (2): 665-681. [140] XU J, ZHU M D, ZHANG X, et al. NFκB-mediated CXCL1 production in spinal cord astrocytes contributes to the maintenance of bone cancer pain in mice[J]. J Neuroinflammation, 2014, 11 (1): 38. [141] 安康, 刘倩影, 王婷婷, 等. 骨癌痛患者高迁移率族蛋白1与炎症介质表达关系的临床研究[J]. 中华医学杂志, 2019, 99 (17): 1293-1297. [142] YE D, BU H, GUO G, et al. Activation of CXCL10/CXCR3 signaling attenuates morphine analgesia: involvement of Gi protein[J]. J Mol Neurosci, 2014, 53 (4): 571-9. [143] BRESCHI A, GINGERAS T R, GUIGO R. Comparative transcriptomics in human and mouse[J]. Nat Rev Genet, 2017, 18 (7): 425-440. [144] BRAWAND D, SOUMILLON M, NECSULEA A, et al. The evolution of gene expression levels in mammalian organs[J]. Nature, 2011, 478 (7369): 343-8. [145] BARBOSA-MORAIS N L, IRIMIA M, PAN Q, et al. The evolutionary landscape of alternative splicing in vertebrate species[J]. Science, 2012, 338 (6114): 1587-93. [146] BAKKEN T E, MILLER J A, LUO R, et al. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome[J]. Hum Mol Genet, 2015, 24 (15): 4327-39. [147] HAEHNEL S, REICHE K, LOEFFLER D, et al. Deep sequencing and automated histochemistry of human tissue slice cultures improve their usability as preclinical model for cancer research[J]. Sci Rep, 2019, 9 (1): 19961. [148] KANE C M, HOSKIN P, BENNETT M I. Cancer induced bone pain[J]. BMJ, 2015, 350 (1): 315. [149] VAN DEN BEUKEN-VAN EVERDINGEN M H, DE RIJKE J M, KESSELS A G, et al. Prevalence of pain in patients with cancer: a systematic review of the past 40 years[J]. Ann Oncol, 2007, 18 (9): 1437-49. [150] VAN DEN BEUKEN-VAN EVERDINGEN M H, HOCHSTENBACH L M, JOOSTEN E A, et al. Update on prevalence of pain in patients with cancer: systematic review and meta-analysis[J]. J Pain Symptom Manage, 2016, 51 (6): 1070-1090. [151] CLARK C E, LIU Y, COOPER H M. The Yin and Yang of Wnt/Ryk axon guidance in development and regeneration[J]. Sci China Life Sci, 2014, 57 (4): 366-71. [152] ITOKAZU T, HAYANO Y, TAKAHASHI R, et al. Involvement of Wnt/beta-catenin signaling in the development of neuropathic pain[J]. Neurosci Res, 2014, 79 (1): 34-40. [153] LIU S, LIU Y P, HUANG Z J, et al. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats[J]. Pain, 2015, 156 (12): 2572-84. [154] YUAN S B, JI G, LI B, et al. A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain[J]. Pain, 2015, 156 (7): 1311-9. [155] ZHU A, SHEN L, XU L, et al. Suppression of Wnt5a, but not Wnts, relieves chronic post-thoracotomy pain via anti-inflammatory modulation in rats[J]. Biochem Biophys Res Commun, 2017, 493 (1): 474-480. [156] SIMONETTI M, AGARWAL N, STOSSER S, et al. Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways[J]. Neuron, 2014, 83 (1): 104-21. [157] ASEM M, YOUNG A M, OYAMA C, et al. Host Wnt5a potentiates microenvironmental regulation of ovarian cancer metastasis[J]. Cancer Res, 2020, 80 (5): 1156-1170. [158] THIELE S, RACHNER T D, RAUNER M, et al. WNT5A and its receptors in the bone-cancer dialogue[J]. J Bone Miner Res, 2016, 31 (8): 1488-96. [159] HALFORD M M, MACHEDA M L, PARISH C L, et al. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK[J]. PLoS One, 2013, 8 (9): 75447. [160] 曹振昊, 田云虎, 马璐璐, 等. 慢性压迫背根神经节大鼠模型背根神经节Wnt5a的表达变化[J]. 中国修复重建外科杂志, 2014, 28 (11): 1392-6. [161] VAN VLIET A C, LEE J, VAN DER POEL M, et al. Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury[J]. PLoS One, 2021, 16 (4): e0249748. [162] LI X, LI Y H, YU S, et al. Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury[J].Brain Res Bull, 2008, 77 (4): 178-84. [163] BARON R, KNEISSEL M. WNT signaling in bone homeostasis and disease: from human mutations to treatments[J]. Nat Med, 2013, 19 (2): 179-92. [164] LI L, HUTCHINS B I, KALIL K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms[J]. J Neurosci, 2009, 29 (18): 5873-83. [165] GHILARDI J R, ROHRICH H, LINDSAY T H, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain[J]. J Neurosci, 2005, 25 (12): 3126-31. [166] CHEN Y, GEIS C, SOMMER C. Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway[J]. J Neurosci, 2008, 28 (22): 5836-45. [167] CAI M, SIKONG Y, WANG Q, et al. Gpx3 prevents migration and invasion in gastric cancer by targeting NFκB/Wnt5a/JNK signaling[J]. Int J Clin Exp Pathol, 2019, 12 (4): 1194-1203. [168] BRETON-ROMERO R, FENG B, HOLBROOK M, et al. Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling[J]. Arterioscler Thromb Vasc Biol, 2016, 36 (3): 561-9. [169] FARB M G, KARKI S, PARK S Y, et al. WNT5A-JNK regulation of vascular insulin resistance in human obesity[J]. Vasc Med, 2016, 21 (6): 489-496. [170] CAO Y, WANG X, XU C, et al. 4-HPR impairs bladder cancer cell migration and invasion by interfering with the Wnt5a/JNK and Wnt5a/MMP-2 signaling pathways[J]. Oncol Lett, 2016, 12 (3): 1833-1839. [171] ZENG A, YIN J, LI Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma[J]. Cell Death Dis, 2018, 9 (3): 394. [172] PARK S Y, KANG M J, HAN J S. Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells[J]. Mol Brain, 2018, 11 (1): 39. |
所在学位评定分委会 | 生物系
|
国内图书分类号 | R738
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/264514 |
专题 | 生命科学学院_生物系 |
推荐引用方式 GB/T 7714 |
翟明珠. Wnt5a/Ryk信号参与骨癌痛的外周机制[D]. 深圳. 哈尔滨工业大学,2021.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11749321-翟明珠-生物系.pdf(11002KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[翟明珠]的文章 |
百度学术 |
百度学术中相似的文章 |
[翟明珠]的文章 |
必应学术 |
必应学术中相似的文章 |
[翟明珠]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论