中文版 | English
题名

IKULDAS: An Improved kNN-Based UHF RFID Indoor Localization Algorithm for Directional Radiation Scenario

作者
通讯作者Yan, Shuxia
发表日期
2019-02-02
DOI
发表期刊
ISSN
1424-8220
卷号19期号:4
摘要
Ultra high frequency radio frequency identification (UHF RFID)-based indoor localization technology has been a competitive candidate for context-awareness services. Previous works mainly utilize a simplified Friis transmission equation for simulating/rectifying received signal strength indicator (RSSI) values, in which the directional radiation of tag antenna and reader antenna was not fully considered, leading to unfavorable performance degradation. Moreover, a k-nearest neighbor (kNN) algorithm is widely used in existing systems, whereas the selection of an appropriate k value remains a critical issue. To solve such problems, this paper presents an improved kNN-based indoor localization algorithm for a directional radiation scenario, IKULDAS. Based on the gain features of dipole antenna and patch antenna, a novel RSSI estimation model is first established. By introducing the inclination angle and rotation angle to characterize the antenna postures, the gains of tag antenna and reader antenna referring to direct path and reflection paths are re-expressed. Then, three strategies are proposed and embedded into typical kNN for improving the localization performance. In IKULDAS, the optimal single fixed rotation angle is introduced for filtering a superior measurement and an NJW-based algorithm is advised for extracting nearest-neighbor reference tags. Furthermore, a dynamic mapping mechanism is proposed to accelerate the tracking process. Simulation results show that IKULDAS achieves a higher positioning accuracy and lower time consumption compared to other typical algorithms.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Scientific Research Project of Tianjin Education Commission[2017KJ088]
WOS研究方向
Chemistry ; Electrochemistry ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Electrochemistry ; Instruments & Instrumentation
WOS记录号
WOS:000460829200219
出版者
EI入藏号
20191306706668
EI主题词
Dipole antennas ; Indoor positioning systems ; Learning algorithms ; Microstrip antennas ; Nearest neighbor search ; Radio frequency identification (RFID) ; Slot antennas
EI分类号
Radio Systems and Equipment:716.3 ; Optimization Techniques:921.5
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26452
专题工学院_电子与电气工程系
作者单位
1.Tianjin Polytech Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
2.Tianjin Polytech Univ, Tianjin Key Lab Optoelect Detect Technol & Syst, Tianjin 300387, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
4.Tianjin Univ, Sch Marine Sci & Technol, Tianjin 300072, Peoples R China
5.China Mobile Commun Grp Tianjin Co Ltd, Tianjin 300308, Peoples R China
推荐引用方式
GB/T 7714
Shi, Weiguang,Du, Jiangxia,Cao, Xiaowei,et al. IKULDAS: An Improved kNN-Based UHF RFID Indoor Localization Algorithm for Directional Radiation Scenario[J]. SENSORS,2019,19(4).
APA
Shi, Weiguang.,Du, Jiangxia.,Cao, Xiaowei.,Yu, Yang.,Cao, Yu.,...&Ni, Chunya.(2019).IKULDAS: An Improved kNN-Based UHF RFID Indoor Localization Algorithm for Directional Radiation Scenario.SENSORS,19(4).
MLA
Shi, Weiguang,et al."IKULDAS: An Improved kNN-Based UHF RFID Indoor Localization Algorithm for Directional Radiation Scenario".SENSORS 19.4(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi, Weiguang]的文章
[Du, Jiangxia]的文章
[Cao, Xiaowei]的文章
百度学术
百度学术中相似的文章
[Shi, Weiguang]的文章
[Du, Jiangxia]的文章
[Cao, Xiaowei]的文章
必应学术
必应学术中相似的文章
[Shi, Weiguang]的文章
[Du, Jiangxia]的文章
[Cao, Xiaowei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。