中文版 | English
题名

Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling

作者
通讯作者Minku, Leandro L.; Yao, Xin
发表日期
2019-02
DOI
发表期刊
ISSN
1049-331X
EISSN
1557-7392
卷号28期号:1
摘要

Software effort estimation (SEE) usually suffers from inherent uncertainty arising from predictive model limitations and data noise. Relying on point estimation only may ignore the uncertain factors and lead project managers (PMs) to wrong decision making. Prediction intervals (PIs) with confidence levels (CLs) present a more reasonable representation of reality, potentially helping PMs to make better-informed decisions and enable more flexibility in these decisions. However, existing methods for PIs either have strong limitations or are unable to provide informative PIs. To develop a "better" effort predictor, we propose a novel PI estimator called Synthetic Bootstrap ensemble of Relevance Vector Machines (SynB-RVM) that adopts Bootstrap resampling to produce multiple RVM models based on modified training bags whose replicated data projects are replaced by their synthetic counterparts. We then provide three ways to assemble those RVM models into a final probabilistic effort predictor, from which PIs with CLs can be generated. When used as a point estimator, SynB-RVM can either significantly outperform or have similar performance compared with other investigated methods. When used as an uncertain predictor, SynB-RVM can achieve significantly narrower PIs compared to its base learner RVM. Its hit rates and relative widths are no worse than the other compared methods that can provide uncertain estimation.

关键词
学科领域
计算机科学技术
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering
WOS记录号
WOS:000460377700007
出版者
EI入藏号
20190606463059
EI主题词
Bayesian Networks ; Forecasting ; Inference Engines ; Personnel Training ; Risk Management
EI分类号
Expert Systems:723.4.1 ; Personnel:912.4 ; Accidents And Accident Prevention:914.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26496
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology, China
2.University of Birmingham, UK
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Song, Liyan,Minku, Leandro L.,Yao, Xin. Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling[J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,2019,28(1).
APA
Song, Liyan,Minku, Leandro L.,&Yao, Xin.(2019).Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling.ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,28(1).
MLA
Song, Liyan,et al."Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling".ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 28.1(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-ppTOSEM2019-online(3508KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Liyan]的文章
[Minku, Leandro L.]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Song, Liyan]的文章
[Minku, Leandro L.]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Song, Liyan]的文章
[Minku, Leandro L.]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。