题名 | Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling |
作者 | |
通讯作者 | Minku, Leandro L.; Yao, Xin |
发表日期 | 2019-02
|
DOI | |
发表期刊 | |
ISSN | 1049-331X
|
EISSN | 1557-7392
|
卷号 | 28期号:1 |
摘要 | Software effort estimation (SEE) usually suffers from inherent uncertainty arising from predictive model limitations and data noise. Relying on point estimation only may ignore the uncertain factors and lead project managers (PMs) to wrong decision making. Prediction intervals (PIs) with confidence levels (CLs) present a more reasonable representation of reality, potentially helping PMs to make better-informed decisions and enable more flexibility in these decisions. However, existing methods for PIs either have strong limitations or are unable to provide informative PIs. To develop a "better" effort predictor, we propose a novel PI estimator called Synthetic Bootstrap ensemble of Relevance Vector Machines (SynB-RVM) that adopts Bootstrap resampling to produce multiple RVM models based on modified training bags whose replicated data projects are replaced by their synthetic counterparts. We then provide three ways to assemble those RVM models into a final probabilistic effort predictor, from which PIs with CLs can be generated. When used as a point estimator, SynB-RVM can either significantly outperform or have similar performance compared with other investigated methods. When used as an uncertain predictor, SynB-RVM can achieve significantly narrower PIs compared to its base learner RVM. Its hit rates and relative widths are no worse than the other compared methods that can provide uncertain estimation. |
关键词 | |
学科领域 | 计算机科学技术
|
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Program for University Key Laboratory of Guangdong Province[2017KSYS008]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Software Engineering
|
WOS记录号 | WOS:000460377700007
|
出版者 | |
EI入藏号 | 20190606463059
|
EI主题词 | Bayesian Networks
; Forecasting
; Inference Engines
; Personnel Training
; Risk Management
|
EI分类号 | Expert Systems:723.4.1
; Personnel:912.4
; Accidents And Accident Prevention:914.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:17
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26496 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology, China 2.University of Birmingham, UK |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Song, Liyan,Minku, Leandro L.,Yao, Xin. Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling[J]. ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,2019,28(1).
|
APA |
Song, Liyan,Minku, Leandro L.,&Yao, Xin.(2019).Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling.ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY,28(1).
|
MLA |
Song, Liyan,et al."Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling".ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 28.1(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
1-ppTOSEM2019-online(3508KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论