中文版 | English
题名

Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise

作者
通讯作者Tang, Ke
发表日期
2019-02
DOI
发表期刊
ISSN
0178-4617
EISSN
1432-0541
卷号81期号:2页码:749-795
摘要
In many real-world optimization problems, the objective function evaluation is subject to noise, and we cannot obtain the exact objective value. Evolutionary algorithms (EAs), a type of general-purpose randomized optimization algorithm, have been shown to be able to solve noisy optimization problems well. However, previous theoretical analyses of EAs mainly focused on noise-free optimization, which makes the theoretical understanding largely insufficient for the noisy case. Meanwhile, the few existing theoretical studies under noise often considered the one-bit noise model, which flips a randomly chosen bit of a solution before evaluation; while in many realistic applications, several bits of a solution can be changed simultaneously. In this paper, we study a natural extension of one-bit noise, the bit-wise noise model, which independently flips each bit of a solution with some probability. We analyze the running time of the (1+1)-EA solving OneMax and LeadingOnes under bit-wise noise for the first time, and derive the ranges of the noise level for polynomial and super-polynomial running time bounds. The analysis on LeadingOnes under bit-wise noise can be easily transferred to one-bit noise, and improves the previously known results. Since our analysis discloses that the (1+1)-EA can be efficient only under low noise levels, we also study whether the sampling strategy can bring robustness to noise. We prove that using sampling can significantly increase the largest noise level allowing a polynomial running time, that is, sampling is robust to noise.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Royal Society Newton Advanced Fellowship[NA150123]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Software Engineering ; Mathematics, Applied
WOS记录号
WOS:000458280100014
出版者
EI入藏号
20183105633203
EI主题词
Computational complexity ; Optimization ; Polynomials ; Sampling
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Algebra:921.1 ; Optimization Techniques:921.5
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26501
专题工学院_计算机科学与工程系
作者单位
1.Univ Sci & Technol China, Sch Comp Sci & Technol, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei 230027, Anhui, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qian, Chao,Bian, Chao,Jiang, Wu,et al. Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise[J]. ALGORITHMICA,2019,81(2):749-795.
APA
Qian, Chao,Bian, Chao,Jiang, Wu,&Tang, Ke.(2019).Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise.ALGORITHMICA,81(2),749-795.
MLA
Qian, Chao,et al."Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under Bit-Wise Noise".ALGORITHMICA 81.2(2019):749-795.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian, Chao]的文章
[Bian, Chao]的文章
[Jiang, Wu]的文章
百度学术
百度学术中相似的文章
[Qian, Chao]的文章
[Bian, Chao]的文章
[Jiang, Wu]的文章
必应学术
必应学术中相似的文章
[Qian, Chao]的文章
[Bian, Chao]的文章
[Jiang, Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。