题名 | Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows |
作者 | |
通讯作者 | de Motta, J. C. Brandle |
发表日期 | 2019-01-30
|
DOI | |
发表期刊 | |
ISSN | 0045-7930
|
EISSN | 1879-0747
|
卷号 | 179页码:1-14 |
摘要 | During the last decade, many approaches for resolved-particle simulation (RPS) have been developed for numerical studies of finite-size particle-laden turbulent flows. In this paper, three RPS approaches are compared for a particle-laden decaying turbulence case. These methods are, the Volume-of-Fluid Lagrangian method, based on the viscosity penalty method (VoF-Lag); a direct forcing Immersed Boundary Method, based on a regularized delta function approach for the fluid/solid coupling (IBM); and the Bounce Back scheme developed for Lattice Boltzmann method (LBM-BB). The physics and the numerical performances of the methods are analyzed. Modulation of turbulence is observed for all the methods, with a faster decay of turbulent kinetic energy compared to the single-phase case. Lagrangian particle statistics, such as the velocity probability density function and the velocity autocorrelation function, show minor differences among the three methods. However, major differences between the codes are observed in the evolution of the particle kinetic energy. These differences are related to the treatment of the initial condition when the particles are inserted in an initially single-phase turbulence. The averaged particle/fluid slip velocity is also analyzed, showing similar behavior as compared to the results referred in the literature. The computational performances of the different methods differ significantly. The VoF-Lag method appears to be computationally most expensive. Indeed, this method is not adapted to turbulent cases. The IBM and LBM-BB implementations show very good scaling. (C) 2018 Elsevier Ltd. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | U.S. National Science Foundation (NSF)[CBET-1706130]
|
WOS研究方向 | Computer Science
; Mechanics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Mechanics
|
WOS记录号 | WOS:000467514000001
|
出版者 | |
EI入藏号 | 20184406024312
|
EI主题词 | Autocorrelation
; Computational fluid dynamics
; Constrained optimization
; Delta functions
; Direct numerical simulation
; Kinetic energy
; Kinetics
; Lagrange multipliers
; Probability density function
; Turbulence
; Turbulent flow
|
EI分类号 | Fluid Flow, General:631.1
; Computer Applications:723.5
; Mathematics:921
; Numerical Methods:921.6
; Probability Theory:922.1
; Systems Science:961
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26549 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Univ Toulouse, IMFT, CNRS, Toulouse, France 2.Univ Rouen Normandie, INSA Rouen, CNRS, CORIA, St Etienne Du Rouvray, France 3.Delft Univ Technol, Lab Aero & Hydrodynam, Delft, Netherlands 4.KTH, Dept Mech, SE-10044 Stockholm, Sweden 5.Univ Aberdeen, Sch Engn, Aberdeen, Scotland 6.Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA 7.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen, Peoples R China 8.Off Natl Etud & Rech Aerosp, French Aerosp Lab, Toulouse, France 9.Univ Paris Est Marne la Vallee, Lab Modelisat & Simulat Multi Echelle MSME, CNRS, Marne La Vallee, France 10.Univ Toulouse, CNRS, CALMIP, Toulouse, France |
推荐引用方式 GB/T 7714 |
de Motta, J. C. Brandle,Costa, P.,Derksen, J. J.,et al. Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows[J]. COMPUTERS & FLUIDS,2019,179:1-14.
|
APA |
de Motta, J. C. Brandle.,Costa, P..,Derksen, J. J..,Peng, C..,Wang, L-P.,...&Renon, N..(2019).Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows.COMPUTERS & FLUIDS,179,1-14.
|
MLA |
de Motta, J. C. Brandle,et al."Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows".COMPUTERS & FLUIDS 179(2019):1-14.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Brandle de Mott-2019(3117KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论