题名 | Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists |
作者 | |
通讯作者 | Jia, Zhih-Ahn; Wu, Yu-Chun; Kong, Liang |
发表日期 | 2019-01-04
|
DOI | |
发表期刊 | |
ISSN | 2469-9926
|
EISSN | 2469-9934
|
卷号 | 99期号:1 |
摘要 | Machine-learning representations of many-body quantum states have recently been introduced as an ansatz to describe the ground states and unitary evolutions of many-body quantum systems. We investigate one of the most important representations, the restricted Boltzmann machine (RBM), in the stabilizer formalism. A general method to construct RBM representations for stabilizer code states is given, and exact RBM representations for several types of stabilizer groups with the number of hidden neurons equal to or less than the number of visible neurons are presented. The result indicates that the representation is extremely efficient. Then we analyze a surface code with boundaries, defects, domain walls, and twists in full detail and find that almost all the models can be efficiently represented via the RBM ansatz: the RBM parameters of the perfect case, boundary case, and defect case are constructed analytically using the method we provide in the stabilizer formalism, and the domain wall and twist case is studied numerically. In addition, the case for Kitaev's D (Z(d)) model, which is a generalized model of the surface code, is also investigated. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Anhui Initiative in Quantum Information Technologies[AHY080000]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000455050600003
|
出版者 | |
EI入藏号 | 20190306370851
|
EI主题词 | Artificial intelligence
; Codes (symbols)
; Ground state
; Learning systems
; Quantum optics
|
EI分类号 | Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Light/Optics:741.1
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:21
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26634 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USA 2.Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA 3.Univ Sci & Technol China, Sch Phys, Chinese Acad Sci, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China 4.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China 5.Univ Sci & Technol China, Sch Gifted Young, Hefei 230026, Anhui, Peoples R China 6.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 7.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China |
通讯作者单位 | 量子科学与工程研究院; 物理系 |
推荐引用方式 GB/T 7714 |
Jia, Zhih-Ahn,Zhang, Yuan-Hang,Wu, Yu-Chun,et al. Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists[J]. PHYSICAL REVIEW A,2019,99(1).
|
APA |
Jia, Zhih-Ahn,Zhang, Yuan-Hang,Wu, Yu-Chun,Kong, Liang,Guo, Guang-Can,&Guo, Guo-Ping.(2019).Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists.PHYSICAL REVIEW A,99(1).
|
MLA |
Jia, Zhih-Ahn,et al."Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists".PHYSICAL REVIEW A 99.1(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Jia-2019-Efficient m(877KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论