中文版 | English
题名

Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists

作者
通讯作者Jia, Zhih-Ahn; Wu, Yu-Chun; Kong, Liang
发表日期
2019-01-04
DOI
发表期刊
ISSN
2469-9926
EISSN
2469-9934
卷号99期号:1
摘要
Machine-learning representations of many-body quantum states have recently been introduced as an ansatz to describe the ground states and unitary evolutions of many-body quantum systems. We investigate one of the most important representations, the restricted Boltzmann machine (RBM), in the stabilizer formalism. A general method to construct RBM representations for stabilizer code states is given, and exact RBM representations for several types of stabilizer groups with the number of hidden neurons equal to or less than the number of visible neurons are presented. The result indicates that the representation is extremely efficient. Then we analyze a surface code with boundaries, defects, domain walls, and twists in full detail and find that almost all the models can be efficiently represented via the RBM ansatz: the RBM parameters of the perfect case, boundary case, and defect case are constructed analytically using the method we provide in the stabilizer formalism, and the domain wall and twist case is studied numerically. In addition, the case for Kitaev's D (Z(d)) model, which is a generalized model of the surface code, is also investigated.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Anhui Initiative in Quantum Information Technologies[AHY080000]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000455050600003
出版者
EI入藏号
20190306370851
EI主题词
Artificial intelligence ; Codes (symbols) ; Ground state ; Learning systems ; Quantum optics
EI分类号
Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Light/Optics:741.1
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:21
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26634
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USA
2.Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
3.Univ Sci & Technol China, Sch Phys, Chinese Acad Sci, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
4.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
5.Univ Sci & Technol China, Sch Gifted Young, Hefei 230026, Anhui, Peoples R China
6.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
7.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
通讯作者单位量子科学与工程研究院;  物理系
推荐引用方式
GB/T 7714
Jia, Zhih-Ahn,Zhang, Yuan-Hang,Wu, Yu-Chun,et al. Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists[J]. PHYSICAL REVIEW A,2019,99(1).
APA
Jia, Zhih-Ahn,Zhang, Yuan-Hang,Wu, Yu-Chun,Kong, Liang,Guo, Guang-Can,&Guo, Guo-Ping.(2019).Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists.PHYSICAL REVIEW A,99(1).
MLA
Jia, Zhih-Ahn,et al."Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists".PHYSICAL REVIEW A 99.1(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Jia-2019-Efficient m(877KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jia, Zhih-Ahn]的文章
[Zhang, Yuan-Hang]的文章
[Wu, Yu-Chun]的文章
百度学术
百度学术中相似的文章
[Jia, Zhih-Ahn]的文章
[Zhang, Yuan-Hang]的文章
[Wu, Yu-Chun]的文章
必应学术
必应学术中相似的文章
[Jia, Zhih-Ahn]的文章
[Zhang, Yuan-Hang]的文章
[Wu, Yu-Chun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。