题名 | DETERMINING A RANDOM SCHRODINGER EQUATION WITH UNKNOWN SOURCE AND POTENTIAL |
作者 | |
通讯作者 | Li, Jingzhi |
发表日期 | 2019
|
DOI | |
发表期刊 | |
ISSN | 0036-1410
|
EISSN | 1095-7154
|
卷号 | 51期号:4页码:3465-3491 |
摘要 | We are concerned with the direct and inverse scattering problems associated with a time-harmonic random Schrodinger equation with unknown source and potential terms. The well-posedness of the direct scattering problem is first established. 'Three uniqueness results are then obtained for the corresponding inverse problems in determining the variance of the source, the potential and the expectation of the source, respectively, by the associated far-field measurements. First, a single realization of the passive scattering measurement can uniquely recover the variance of the source without the a priori knowledge of the other unknowns. Second, if active scattering measurement can be further obtained, a single realization can uniquely recover the potential function without knowing the source. Finally, both the potential and the first two statistic moments of the random source can be uniquely recovered with full measurement data. The major novelty of our study is that on the one hand, both the random source and the potential are unknown, and on the other hand, both passive and active scattering measurements are used for the recovery in different scenarios. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Hong Kong RGC grants[12302017]
; Hong Kong RGC grants[12301218]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:000483950800022
|
出版者 | |
EI入藏号 | 20194807753871
|
EI主题词 | Inverse problems
; Recovery
|
EI分类号 | Mathematics:921
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26688 |
专题 | 理学院_数学系 工学院_材料科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China 2.Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Li, Jingzhi,Liu, Hongyu,Ma, Shiqi. DETERMINING A RANDOM SCHRODINGER EQUATION WITH UNKNOWN SOURCE AND POTENTIAL[J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS,2019,51(4):3465-3491.
|
APA |
Li, Jingzhi,Liu, Hongyu,&Ma, Shiqi.(2019).DETERMINING A RANDOM SCHRODINGER EQUATION WITH UNKNOWN SOURCE AND POTENTIAL.SIAM JOURNAL ON MATHEMATICAL ANALYSIS,51(4),3465-3491.
|
MLA |
Li, Jingzhi,et al."DETERMINING A RANDOM SCHRODINGER EQUATION WITH UNKNOWN SOURCE AND POTENTIAL".SIAM JOURNAL ON MATHEMATICAL ANALYSIS 51.4(2019):3465-3491.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论