中文版 | English
题名

Visual graph mining for graph matching

作者
通讯作者Zhang, Quanshi
发表日期
2019-01
DOI
发表期刊
ISSN
1077-3142
EISSN
1090-235X
卷号178页码:16-29
摘要
In this study, we formulate the concept of "mining maximal-size frequent subgraphs" in the challenging domain of visual data (images and videos). In general, visual knowledge can usually be modeled as attributed relational graphs (ARGs) with local attributes representing local parts and pairwise attributes describing the spatial relationship between parts. Thus, from a practical perspective, such mining of maximal-size subgraphs can be regarded as the discovery of common objects from visual data without given annotations of object bounding boxes. From a theoretical perspective, in this study, we propose a generic definition of common subgraphs among ARGs. Many previous studies can be roughly considered as special cases of the definition. In our definition, we consider 1) variations of unary/pairwise attributes among different ARGs, 2) linkage conditions of different nodes, and 3) the learning of similarity metrics for each node. The generality of our subgraph pattern proposes great challenges to the graph-mining algorithm. We propose an approximate but efficient solution to the mining problem. We conduct five experiments to evaluate our method with different kinds of visual data, including videos and RGB/RGB-D images. These experiments demonstrate the generality of the proposed method.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000454372800002
出版者
EI入藏号
20184906203806
EI主题词
Pattern matching
EI分类号
Data Processing and Image Processing:723.2
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26751
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Shanghai Jiao Tong Univ, Shanghai, Peoples R China
2.Univ Tokyo, Tokyo, Japan
3.Univ Calif Los Angeles, Los Angeles, CA USA
4.Southern Univ Sci & Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Quanshi,Song, Xuan,Yang, Yu,et al. Visual graph mining for graph matching[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,178:16-29.
APA
Zhang, Quanshi,Song, Xuan,Yang, Yu,Ma, Haotian,&Shibasaki, Ryosuke.(2019).Visual graph mining for graph matching.COMPUTER VISION AND IMAGE UNDERSTANDING,178,16-29.
MLA
Zhang, Quanshi,et al."Visual graph mining for graph matching".COMPUTER VISION AND IMAGE UNDERSTANDING 178(2019):16-29.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zhang-2019-Visual gr(5404KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Quanshi]的文章
[Song, Xuan]的文章
[Yang, Yu]的文章
百度学术
百度学术中相似的文章
[Zhang, Quanshi]的文章
[Song, Xuan]的文章
[Yang, Yu]的文章
必应学术
必应学术中相似的文章
[Zhang, Quanshi]的文章
[Song, Xuan]的文章
[Yang, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。