题名 | Visual graph mining for graph matching |
作者 | |
通讯作者 | Zhang, Quanshi |
发表日期 | 2019-01
|
DOI | |
发表期刊 | |
ISSN | 1077-3142
|
EISSN | 1090-235X
|
卷号 | 178页码:16-29 |
摘要 | In this study, we formulate the concept of "mining maximal-size frequent subgraphs" in the challenging domain of visual data (images and videos). In general, visual knowledge can usually be modeled as attributed relational graphs (ARGs) with local attributes representing local parts and pairwise attributes describing the spatial relationship between parts. Thus, from a practical perspective, such mining of maximal-size subgraphs can be regarded as the discovery of common objects from visual data without given annotations of object bounding boxes. From a theoretical perspective, in this study, we propose a generic definition of common subgraphs among ARGs. Many previous studies can be roughly considered as special cases of the definition. In our definition, we consider 1) variations of unary/pairwise attributes among different ARGs, 2) linkage conditions of different nodes, and 3) the learning of similarity metrics for each node. The generality of our subgraph pattern proposes great challenges to the graph-mining algorithm. We propose an approximate but efficient solution to the mining problem. We conduct five experiments to evaluate our method with different kinds of visual data, including videos and RGB/RGB-D images. These experiments demonstrate the generality of the proposed method. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000454372800002
|
出版者 | |
EI入藏号 | 20184906203806
|
EI主题词 | Pattern matching
|
EI分类号 | Data Processing and Image Processing:723.2
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26751 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Shanghai Jiao Tong Univ, Shanghai, Peoples R China 2.Univ Tokyo, Tokyo, Japan 3.Univ Calif Los Angeles, Los Angeles, CA USA 4.Southern Univ Sci & Technol, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Zhang, Quanshi,Song, Xuan,Yang, Yu,et al. Visual graph mining for graph matching[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2019,178:16-29.
|
APA |
Zhang, Quanshi,Song, Xuan,Yang, Yu,Ma, Haotian,&Shibasaki, Ryosuke.(2019).Visual graph mining for graph matching.COMPUTER VISION AND IMAGE UNDERSTANDING,178,16-29.
|
MLA |
Zhang, Quanshi,et al."Visual graph mining for graph matching".COMPUTER VISION AND IMAGE UNDERSTANDING 178(2019):16-29.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Zhang-2019-Visual gr(5404KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论