中文版 | English
题名

Multi-Granularity Whole-Brain Segmentation Based Functional Network Analysis Using Resting-State fMRI

作者
通讯作者Tang, Xiaoying
发表日期
2018-12-12
DOI
发表期刊
ISSN
1662-453X
卷号12
摘要

In this work, we systematically analyzed the effects of various nodal definitions, as determined by a multi-granularity whole-brain segmentation scheme, upon the topological architecture of the human brain functional network using the resting-state functional magnetic resonance imaging data of 19 healthy, young subjects. A number of functional networks were created with their nodes defined according to two types of anatomical definitions (Type I and Type II) each of which consists of five granularity levels of whole brain segmentations with each level linked through ontology-based, hierarchical, structural relationships. Topological properties were computed for each network and then compared across levels within the same segmentation type as well as between Type I and Type II. Certain network architecture patterns were observed in our study: (1) As the granularity changes, the absolute values of each node's nodal degree and nodal betweenness change accordingly but the relative values within a single network do not change considerably; (2) The average nodal degree is generally affected by the sparsity level of the network whereas the other topological properties are more specifically affected by the nodal definitions; (3) Within the same ontology relationship type, as the granularity decreases, the network becomes more efficient at information propagation; (4) The small-worldness that we observe is an intrinsic property of the brain's resting-state functional network, independent of the ontology type and the granularity level. Furthermore, we validated the aforementioned conclusions and measured the reproducibility of this multi-granularity network analysis pipeline using another dataset of 49 healthy young subjects that had been scanned twice.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Natural Science Foundation of SZU[2017088]
WOS研究方向
Neurosciences & Neurology
WOS类目
Neurosciences
WOS记录号
WOS:000453105700002
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26801
专题工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
2.Shenzhen Univ, Sch Biomed Engn, Hlth Sci Ctr, Shenzhen, Peoples R China
3.Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
4.Sun Yat Sen Univ, Affiliated Hosp 1, Dept Rehabil Med, Guangzhou, Guangdong, Peoples R China
5.Sun Yat Sen Univ, Zhongshan Sch Med, Guangdong Prov Key Lab Brain Funct & Dis, Guangzhou, Guangdong, Peoples R China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Gong, Yujing,Wu, Huijun,Li, Jingyuan,et al. Multi-Granularity Whole-Brain Segmentation Based Functional Network Analysis Using Resting-State fMRI[J]. Frontiers in Neuroscience,2018,12.
APA
Gong, Yujing,Wu, Huijun,Li, Jingyuan,Wang, Nizhuan,Liu, Hanjun,&Tang, Xiaoying.(2018).Multi-Granularity Whole-Brain Segmentation Based Functional Network Analysis Using Resting-State fMRI.Frontiers in Neuroscience,12.
MLA
Gong, Yujing,et al."Multi-Granularity Whole-Brain Segmentation Based Functional Network Analysis Using Resting-State fMRI".Frontiers in Neuroscience 12(2018).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
fnins-12-00942.pdf(6076KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gong, Yujing]的文章
[Wu, Huijun]的文章
[Li, Jingyuan]的文章
百度学术
百度学术中相似的文章
[Gong, Yujing]的文章
[Wu, Huijun]的文章
[Li, Jingyuan]的文章
必应学术
必应学术中相似的文章
[Gong, Yujing]的文章
[Wu, Huijun]的文章
[Li, Jingyuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: fnins-12-00942.pdf
格式: Adobe PDF
文件名: fnins-12-00942.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。