中文版 | English
题名

A computer vision-based approach to fusing spatiotemporal data for hydrological modeling

作者
通讯作者Zheng, Yi
发表日期
2018-12
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号567页码:25-40
摘要
This study develops a novel approach to data-driven hydrological modeling. The approach adopts the feature representation technique in computer vision to effectively exploit spatial information contained in time-variant input data fields and seamlessly fuse multisource information via machine learning. The new approach overcomes a major limitation of existing approaches in which the spatial heterogeneity of input variables cannot be sufficiently accounted for. The approach is applied to predict the streamflow in a watershed on the northern margin of the Qinghai-Tibetan Plateau, and its performance is compared with various data-driven and process-based models. The major findings are as follows. First, the new approach represents a general framework for the fusion of multisource spatiotemporal data for hydrological modeling and demonstrates great potential to incorporate fast-growing environmental big data. Second, the new approach demonstrates satisfactory short-term forecasting, long-term simulation, and transfer learning performances and is promising for addressing predictions in ungauged basins. Third, the predictors, including precipitation, temperature, leaf area index, and historical streamflow, play markedly distinct roles in modeling streamflow with the novel approach. Finally, topographic information is not a necessary model input in the proposed approach because spatial patterns can be well embodied by other inputs (e.g., temperature) that have high similarities with topography. This study represents the first attempt to bring computer vision into data-driven hydrological modeling and may inspire future studies in this promising direction.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Municipal Science and Technology Innovation Committee[JCYJ20160530190411804]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000454753900003
出版者
EI入藏号
20184105932181
EI主题词
Artificial intelligence ; Computer vision ; Data fusion ; Forecasting ; Hydrology ; Learning systems ; Plants (botany) ; Rain ; Stream flow
EI分类号
Waterways:407.2 ; Precipitation:443.3 ; Computer Software, Data Handling and Applications:723
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:32
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26836
专题工学院_环境科学与工程学院
作者单位
1.Southern Univ Sci & Technol, State Environm Protect Key Lab Integrated Surface, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
2.Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore
3.Southern Univ Sci & Technol, Shenzhen Municipal Engn Lab Environm IoT Technol, Shenzhen 518055, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Jiang, Shijie,Zheng, Yi,Babovic, Vladan,et al. A computer vision-based approach to fusing spatiotemporal data for hydrological modeling[J]. JOURNAL OF HYDROLOGY,2018,567:25-40.
APA
Jiang, Shijie,Zheng, Yi,Babovic, Vladan,Tian, Yong,&Han, Feng.(2018).A computer vision-based approach to fusing spatiotemporal data for hydrological modeling.JOURNAL OF HYDROLOGY,567,25-40.
MLA
Jiang, Shijie,et al."A computer vision-based approach to fusing spatiotemporal data for hydrological modeling".JOURNAL OF HYDROLOGY 567(2018):25-40.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Jiang-2018-A compute(8072KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang, Shijie]的文章
[Zheng, Yi]的文章
[Babovic, Vladan]的文章
百度学术
百度学术中相似的文章
[Jiang, Shijie]的文章
[Zheng, Yi]的文章
[Babovic, Vladan]的文章
必应学术
必应学术中相似的文章
[Jiang, Shijie]的文章
[Zheng, Yi]的文章
[Babovic, Vladan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。