题名 | A computer vision-based approach to fusing spatiotemporal data for hydrological modeling |
作者 | |
通讯作者 | Zheng, Yi |
发表日期 | 2018-12
|
DOI | |
发表期刊 | |
ISSN | 0022-1694
|
EISSN | 1879-2707
|
卷号 | 567页码:25-40 |
摘要 | This study develops a novel approach to data-driven hydrological modeling. The approach adopts the feature representation technique in computer vision to effectively exploit spatial information contained in time-variant input data fields and seamlessly fuse multisource information via machine learning. The new approach overcomes a major limitation of existing approaches in which the spatial heterogeneity of input variables cannot be sufficiently accounted for. The approach is applied to predict the streamflow in a watershed on the northern margin of the Qinghai-Tibetan Plateau, and its performance is compared with various data-driven and process-based models. The major findings are as follows. First, the new approach represents a general framework for the fusion of multisource spatiotemporal data for hydrological modeling and demonstrates great potential to incorporate fast-growing environmental big data. Second, the new approach demonstrates satisfactory short-term forecasting, long-term simulation, and transfer learning performances and is promising for addressing predictions in ungauged basins. Third, the predictors, including precipitation, temperature, leaf area index, and historical streamflow, play markedly distinct roles in modeling streamflow with the novel approach. Finally, topographic information is not a necessary model input in the proposed approach because spatial patterns can be well embodied by other inputs (e.g., temperature) that have high similarities with topography. This study represents the first attempt to bring computer vision into data-driven hydrological modeling and may inspire future studies in this promising direction. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Municipal Science and Technology Innovation Committee[JCYJ20160530190411804]
|
WOS研究方向 | Engineering
; Geology
; Water Resources
|
WOS类目 | Engineering, Civil
; Geosciences, Multidisciplinary
; Water Resources
|
WOS记录号 | WOS:000454753900003
|
出版者 | |
EI入藏号 | 20184105932181
|
EI主题词 | Artificial intelligence
; Computer vision
; Data fusion
; Forecasting
; Hydrology
; Learning systems
; Plants (botany)
; Rain
; Stream flow
|
EI分类号 | Waterways:407.2
; Precipitation:443.3
; Computer Software, Data Handling and Applications:723
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/26836 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Southern Univ Sci & Technol, State Environm Protect Key Lab Integrated Surface, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China 2.Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore 3.Southern Univ Sci & Technol, Shenzhen Municipal Engn Lab Environm IoT Technol, Shenzhen 518055, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院; 南方科技大学 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Jiang, Shijie,Zheng, Yi,Babovic, Vladan,et al. A computer vision-based approach to fusing spatiotemporal data for hydrological modeling[J]. JOURNAL OF HYDROLOGY,2018,567:25-40.
|
APA |
Jiang, Shijie,Zheng, Yi,Babovic, Vladan,Tian, Yong,&Han, Feng.(2018).A computer vision-based approach to fusing spatiotemporal data for hydrological modeling.JOURNAL OF HYDROLOGY,567,25-40.
|
MLA |
Jiang, Shijie,et al."A computer vision-based approach to fusing spatiotemporal data for hydrological modeling".JOURNAL OF HYDROLOGY 567(2018):25-40.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Jiang-2018-A compute(8072KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论