中文版 | English
题名

Assessing titanium dioxide nanoparticles transport models by Bayesian uncertainty analysis

作者
通讯作者Zeng, Xiankui
发表日期
2018-12
DOI
发表期刊
ISSN
1436-3240
EISSN
1436-3259
卷号32期号:12页码:3365-3379
摘要
With the rapid growth of nanotechnology industry, nanomaterials as an emerging pollutant are gradually released into subsurface environments and become great concerns. Simulating the transport of nanomaterials in groundwater is an important approach to investigate and predict the impact of nanomaterials on subsurface environments. Currently, a number of transport models are used to simulate this process, and the outputs of these models could be inconsistent with each other due to conceptual model uncertainty. However, the performances of different models on simulating nanoparticles transport in groundwater are rarely assessed in Bayesian framework in previous researches, and these will be the primary objective of this study. A porous media column experiment is conducted to observe the transport of Titanium Dioxide Nanoparticles (nano-TiO2). Ten typical transport models which consider different chemical reaction processes are used to simulate the transport of nano-TiO2, and the observed nano-TiO2 breakthrough curves data are used to calibrate these models. For each transport model, the parameter uncertainty is evaluated using Markov Chain Monte Carlo, and the DREAM((ZS)) algorithm is used to sample parameter probability space. Moreover, the Bayesian model averaging (BMA) method is used to incorporate the conceptual model uncertainty arising from different chemical reaction based transport models. The results indicate that both two-sites and nonequilibrium sorption models can well reproduce the retention of nano-TiO2 transport in porous media. The linear equilibrium sorption isotherm, first-order degradation, and mobile-immobile models fail to describe the nano-TiO2 retention and transport. The BMA method could instead provide more reliable estimations of the predictive uncertainty compared to that using a single model.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
NSFC[41761134089] ; NSFC[41672233] ; NSFC[41501570]
WOS研究方向
Engineering ; Environmental Sciences & Ecology ; Mathematics ; Water Resources
WOS类目
Engineering, Environmental ; Engineering, Civil ; Environmental Sciences ; Statistics & Probability ; Water Resources
WOS记录号
WOS:000451477400004
出版者
EI入藏号
20184305985432
EI主题词
Bayesian networks ; Chemical reactions ; Groundwater ; Markov processes ; Nanoparticles ; Nanostructured materials ; Oxides ; Porous materials ; Titanium dioxide
EI分类号
Groundwater:444.2 ; Nanotechnology:761 ; Chemical Reactions:802.2 ; Chemical Products Generally:804 ; Inorganic Compounds:804.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Probability Theory:922.1 ; Solid State Physics:933 ; Materials Science:951
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/26902
专题工学院_环境科学与工程学院
作者单位
1.Nanjing Univ, Sch Earth Sci & Engn, Key Lab Surficial Geochem, Minist Educ, Nanjing, Jiangsu, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen, Peoples R China
3.Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA
推荐引用方式
GB/T 7714
Liu, Jin,Zeng, Xiankui,Wu, Jichun,et al. Assessing titanium dioxide nanoparticles transport models by Bayesian uncertainty analysis[J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,2018,32(12):3365-3379.
APA
Liu, Jin,Zeng, Xiankui,Wu, Jichun,Liang, Xiuyu,Sun, Yuanyuan,&Zhan, Hongbin.(2018).Assessing titanium dioxide nanoparticles transport models by Bayesian uncertainty analysis.STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT,32(12),3365-3379.
MLA
Liu, Jin,et al."Assessing titanium dioxide nanoparticles transport models by Bayesian uncertainty analysis".STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT 32.12(2018):3365-3379.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Liu-2018-Assessing t(1918KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Jin]的文章
[Zeng, Xiankui]的文章
[Wu, Jichun]的文章
百度学术
百度学术中相似的文章
[Liu, Jin]的文章
[Zeng, Xiankui]的文章
[Wu, Jichun]的文章
必应学术
必应学术中相似的文章
[Liu, Jin]的文章
[Zeng, Xiankui]的文章
[Wu, Jichun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。