中文版 | English
题名

Energy-Efficient Predictive HTTP Adaptive Streaming in Mobile Cellular Networks

作者
通讯作者Gong, Yi
发表日期
2018-11
DOI
发表期刊
ISSN
0018-9545
卷号67期号:11页码:11069-11083
摘要

The rapid growth of mobile video traffic puts significant pressure on energy drain at the network as well as on the end users. Exploiting predicted channel information and designing energy-efficient content delivery protocols have recently drawn attention, which is referred to as predictive, anticipatory, or context-aware resource allocation. In this paper, we investigate how predicted user rates can be exploited for mobile video streaming with the popular HyperText Transfer Protocol (HTTP) based Adaptive Streaming (HAS) (e.g., dynamic adaptive streaming over HTTP). To this end, we develop a robust mobile edge-cloud assisted stochastic Predictive HTTP Adaptive Streaming (PHAS) optimization framework that utilizes unreliable predictions of wireless data rates in a finite look-ahead window to achieve the following objectives: first, to obtain an edge-cloud assisted framework for prediction-based HAS and identify its key functional entities and their interactions; second, to model uncertainty in predicted user rates and propose a robust two-stage QoE optimization approach that dynamically allocates the risks and optimizes system efficiency over a time horizon; and third, to propose a heuristic algorithm allocating time slot ratio for multi-users, which improves network efficiency, fairness, and overall QoE under different prediction error variances, wireless link conditions, and buffer length constraints. Simulation studies and analytical results show that the proposed solution outperforms traditional methods in terms of average QoE, fairness, and energy efficiency.

其他摘要

Predictive green streaming have recently gained attention in wireless network literature due to its significant energy-savings and quality of experience (QoE) gains. In this paper, we investigate how predicted user rates can be exploited for mobile video streaming with the popular Hypertext Transfer Protocol (HTTP) [e.g., HTTP adaptive streaming (HAS)]. To this end, we develop a stochastic predictive HTTP Adaptive streaming (PHAS) optimization framework to achieve the following objectives: 1) an edge-cloud assisted framework for prediction based HAS and identify its key functional entities and their interactions; 2) modelling uncertainty in predicted user rates and propose a robust two-stage QoE optimization approach which dynamically allocate the risks and optimize system efficiency over a time horizon; 3) an efficient heuristic algorithm allocating time slot ratio for multi-users to improve the network efficiency, fairness and overall QoE under different prediction error variances, wireless link conditions and buffer length constraints; Simulation studies and analytical results show that our method has a better performance than traditional methods in terms of average QoE, fairness and energy efficiency.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Engineering ; Telecommunications ; Transportation
WOS类目
Engineering, Electrical & Electronic ; Telecommunications ; Transportation Science & Technology
WOS记录号
WOS:000449962900074
出版者
EI入藏号
20183705794489
EI主题词
Stochastic systems ; Energy efficiency ; Stochastic models ; Hypertext systems ; Mobile telecommunication systems ; Optimization ; Wireless networks ; Forecasting ; Heuristic algorithms ; Uncertainty analysis
EI分类号
Energy Conservation:525.2 ; Radio Systems and Equipment:716.3 ; Data Communication, Equipment and Techniques:722.3 ; Computer Programming:723.1 ; Control Systems:731.1 ; Optimization Techniques:921.5 ; Probability Theory:922.1 ; Systems Science:961
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27009
专题工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China;
2.Southeast Univ, Natl Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China;
3.Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Tao, Liqiang,Gong, Yi,Jin, Shi,et al. Energy-Efficient Predictive HTTP Adaptive Streaming in Mobile Cellular Networks[J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,2018,67(11):11069-11083.
APA
Tao, Liqiang,Gong, Yi,Jin, Shi,&Zhao, Junhui.(2018).Energy-Efficient Predictive HTTP Adaptive Streaming in Mobile Cellular Networks.IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,67(11),11069-11083.
MLA
Tao, Liqiang,et al."Energy-Efficient Predictive HTTP Adaptive Streaming in Mobile Cellular Networks".IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 67.11(2018):11069-11083.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
08454497.pdf(2496KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tao, Liqiang]的文章
[Gong, Yi]的文章
[Jin, Shi]的文章
百度学术
百度学术中相似的文章
[Tao, Liqiang]的文章
[Gong, Yi]的文章
[Jin, Shi]的文章
必应学术
必应学术中相似的文章
[Tao, Liqiang]的文章
[Gong, Yi]的文章
[Jin, Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。