中文版 | English
题名

Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels

作者
通讯作者Liu, Ji
发表日期
2022
DOI
发表期刊
ISSN
0935-9648
EISSN
1521-4095
卷号34
摘要
Engineering conventional hydrogels with muscle-like anisotropic structures can efficiently increase the fatigue threshold over 1000 J m(-2) along the alignment direction; however, the fatigue threshold perpendicular to the alignment is still as low as approximate to 100-300 J m(-2), making them nonsuitable for those scenarios where isotropic properties are desired. Here, inspired by the distinct structure-properties relationship of heart valves, a simple yet general strategy to engineer conventional hydrogels with unprecedented yet isotropic fatigue resistance, with a record-high fatigue threshold over 1,500 J m(-2) along two arbitrary in-plane directions is reported. The two-step process involves the formation of preferentially aligned lamellar micro/nanostructures through a bidirectional freeze-casting process, followed by compression annealing, synergistically contributing to extraordinary resistance to fatigue crack propagation. The study provides a viable means of fabricating soft materials with isotropically extreme properties, thereby unlocking paths to apply these advanced soft materials toward applications including soft robotics, flexible electronics, e-skins, and tissue patches.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文 ; ESI高被引
学校署名
第一 ; 通讯
资助项目
Shenzhen municipal government[Y01336223] ; SUSTech[Y01336123] ; MechERE Center at MIT[Y01346002] ; MechERE Center at SUSTech[Y01346002] ; Science, Technology, and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004] ; Basic and Applied Basic Research Foundation of Guangdong Province[2020A1515110288] ; Basic Research Program of Shenzhen[JCYJ20210324105211032]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:000743189300001
出版者
EI入藏号
20220311473167
EI主题词
Fatigue crack propagation ; Fatigue of materials ; Hydrogels ; Professional aspects
EI分类号
Electronic Equipment, General Purpose and Industrial:715 ; Colloid Chemistry:801.3 ; Chemical Products Generally:804 ; Engineering Professional Aspects:901.1 ; Materials Science:951
ESI学科分类
MATERIALS SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:103
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/272347
专题工学院_机械与能源工程系
工学院_材料科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
2.MIT, Dept Mech Engn, Cambridge, MA 02139 USA
3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
4.UCL, Dept Chem Engn, London WC1E 7JE, England
5.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen 518055, Peoples R China
6.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil, Shenzhen 518055, Peoples R China
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系;  南方科技大学
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Liang, Xiangyu,Chen, Guangda,Lin, Shaoting,et al. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels[J]. ADVANCED MATERIALS,2022,34.
APA
Liang, Xiangyu.,Chen, Guangda.,Lin, Shaoting.,Zhang, Jiajun.,Wang, Liu.,...&Liu, Ji.(2022).Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.ADVANCED MATERIALS,34.
MLA
Liang, Xiangyu,et al."Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels".ADVANCED MATERIALS 34(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang, Xiangyu]的文章
[Chen, Guangda]的文章
[Lin, Shaoting]的文章
百度学术
百度学术中相似的文章
[Liang, Xiangyu]的文章
[Chen, Guangda]的文章
[Lin, Shaoting]的文章
必应学术
必应学术中相似的文章
[Liang, Xiangyu]的文章
[Chen, Guangda]的文章
[Lin, Shaoting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。