题名 | Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels |
作者 | |
通讯作者 | Liu, Ji |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0935-9648
|
EISSN | 1521-4095
|
卷号 | 34 |
摘要 | Engineering conventional hydrogels with muscle-like anisotropic structures can efficiently increase the fatigue threshold over 1000 J m(-2) along the alignment direction; however, the fatigue threshold perpendicular to the alignment is still as low as approximate to 100-300 J m(-2), making them nonsuitable for those scenarios where isotropic properties are desired. Here, inspired by the distinct structure-properties relationship of heart valves, a simple yet general strategy to engineer conventional hydrogels with unprecedented yet isotropic fatigue resistance, with a record-high fatigue threshold over 1,500 J m(-2) along two arbitrary in-plane directions is reported. The two-step process involves the formation of preferentially aligned lamellar micro/nanostructures through a bidirectional freeze-casting process, followed by compression annealing, synergistically contributing to extraordinary resistance to fatigue crack propagation. The study provides a viable means of fabricating soft materials with isotropically extreme properties, thereby unlocking paths to apply these advanced soft materials toward applications including soft robotics, flexible electronics, e-skins, and tissue patches. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
; ESI高被引
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen municipal government[Y01336223]
; SUSTech[Y01336123]
; MechERE Center at MIT[Y01346002]
; MechERE Center at SUSTech[Y01346002]
; Science, Technology, and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]
; Basic and Applied Basic Research Foundation of Guangdong Province[2020A1515110288]
; Basic Research Program of Shenzhen[JCYJ20210324105211032]
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:000743189300001
|
出版者 | |
EI入藏号 | 20220311473167
|
EI主题词 | Fatigue crack propagation
; Fatigue of materials
; Hydrogels
; Professional aspects
|
EI分类号 | Electronic Equipment, General Purpose and Industrial:715
; Colloid Chemistry:801.3
; Chemical Products Generally:804
; Engineering Professional Aspects:901.1
; Materials Science:951
|
ESI学科分类 | MATERIALS SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:103
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/272347 |
专题 | 工学院_机械与能源工程系 工学院_材料科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China 2.MIT, Dept Mech Engn, Cambridge, MA 02139 USA 3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 4.UCL, Dept Chem Engn, London WC1E 7JE, England 5.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen 518055, Peoples R China 6.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil, Shenzhen 518055, Peoples R China |
第一作者单位 | 机械与能源工程系 |
通讯作者单位 | 机械与能源工程系; 南方科技大学 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Liang, Xiangyu,Chen, Guangda,Lin, Shaoting,et al. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels[J]. ADVANCED MATERIALS,2022,34.
|
APA |
Liang, Xiangyu.,Chen, Guangda.,Lin, Shaoting.,Zhang, Jiajun.,Wang, Liu.,...&Liu, Ji.(2022).Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.ADVANCED MATERIALS,34.
|
MLA |
Liang, Xiangyu,et al."Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels".ADVANCED MATERIALS 34(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论