中文版 | English
题名

FedVoting: A Cross-Silo Boosting Tree Construction Method for Privacy-Preserving Long-Term Human Mobility Prediction

作者
通讯作者Song, Xuan
发表日期
2021-12-01
DOI
发表期刊
EISSN
1424-8220
卷号21期号:24
摘要
The prediction of human mobility can facilitate resolving many kinds of urban problems, such as reducing traffic congestion, and promote commercial activities, such as targeted advertising. However, the requisite personal GPS data face privacy issues. Related organizations can only collect limited data and they experience difficulties in sharing them. These data are in "isolated islands" and cannot collectively contribute to improving the performance of applications. Thus, the method of federated learning (FL) can be adopted, in which multiple entities collaborate to train a collective model with their raw data stored locally and, therefore, not exchanged or transferred. However, to predict long-term human mobility, the performance and practicality would be impaired if only some models were simply combined with FL, due to the irregularity and complexity of long-term mobility data. Therefore, we explored the optimized construction method based on the high-efficient gradient-boosting decision tree (GBDT) model with FL and propose the novel federated voting (FedVoting) mechanism, which aggregates the ensemble of differential privacy (DP)-protected GBDTs by the multiple training, cross-validation and voting processes to generate the optimal model and can achieve both good performance and privacy protection. The experiments show the great accuracy in long-term predictions of special event attendance and point-of-interest visits. Compared with training the model independently for each silo (organization) and state-of-art baselines, the FedVoting method achieves a significant accuracy improvement, almost comparable to the centralized training, at a negligible expense of privacy exposure.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Japan's Ministry of Education, Culture, Sports, Science, and Technology (MEXT)[20K19782]
WOS研究方向
Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目
Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号
WOS:000742102500001
出版者
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/272415
专题工学院_计算机科学与工程系
作者单位
1.Univ Tokyo, Ctr Spatial Informat Sci, Kashiwanoha 5 Chome 1-5, Kashiwa, Chiba 2770882, Japan
2.Southern Univ Sci & Technol SUSTech, SUSTech UTokyo Joint Res Ctr Super Smart City, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Liu, Yinghao,Fan, Zipei,Song, Xuan,et al. FedVoting: A Cross-Silo Boosting Tree Construction Method for Privacy-Preserving Long-Term Human Mobility Prediction[J]. SENSORS,2021,21(24).
APA
Liu, Yinghao,Fan, Zipei,Song, Xuan,&Shibasaki, Ryosuke.(2021).FedVoting: A Cross-Silo Boosting Tree Construction Method for Privacy-Preserving Long-Term Human Mobility Prediction.SENSORS,21(24).
MLA
Liu, Yinghao,et al."FedVoting: A Cross-Silo Boosting Tree Construction Method for Privacy-Preserving Long-Term Human Mobility Prediction".SENSORS 21.24(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Yinghao]的文章
[Fan, Zipei]的文章
[Song, Xuan]的文章
百度学术
百度学术中相似的文章
[Liu, Yinghao]的文章
[Fan, Zipei]的文章
[Song, Xuan]的文章
必应学术
必应学术中相似的文章
[Liu, Yinghao]的文章
[Fan, Zipei]的文章
[Song, Xuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。