题名 | Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence |
作者 | |
通讯作者 | Wang, Jianchun |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 0567-7718
|
EISSN | 1614-3116
|
卷号 | 37页码:1773-1785 |
摘要 | We establish a deconvolutional artificial-neural-network (D-ANN) approach in large-eddy simulation (LES) of compressible turbulent flow. Filtered variables in the neighboring locations are taken as the inputs of D-ANN to recover original (unfiltered) variables, including density, momentum and pressure. The scale-similarity form is adopted to reconstruct subfilter-scale (SFS) terms. The proposed D-ANN models can give better a priori predictions of the sub-filter stress and heat flux than the classical approximate-deconvolution method (ADM) and the velocity-gradient model (VGM). The predicted SFS terms with the D-ANN models have correlation coefficients larger than 98.4% and relative errors smaller than 18%. In the a posteriori analysis, the D-ANN model compares against the implicit LES (ILES), the dynamic-Smagorinsky model (DSM), and the dynamic-mixed model (DMM). The D-ANN model predicts better than these classical models for velocity spectra, statistical properties of SFS kinetic energy flux and velocity increments. The turbulence statistics and transient velocity divergence are also accurately reconstructed. The type of explicit filter and the impact of compressibility do not significantly affect a posteriori accuracy of the D-ANN model. Results show that the proposed D-ANN approach has a great potential in developing highly accurate SFS models for large-eddy simulation of complex compressible turbulent flow. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[91952104,92052301,91752201]
|
WOS研究方向 | Engineering
; Mechanics
|
WOS类目 | Engineering, Mechanical
; Mechanics
|
WOS记录号 | WOS:000745567800002
|
出版者 | |
EI入藏号 | 20220511545319
|
EI主题词 | Atmospheric thermodynamics
; Heat flux
; Kinetic energy
; Kinetics
; Large eddy simulation
; Machine learning
; Turbulence
; Turbulent flow
; Velocity
|
EI分类号 | Atmospheric Properties:443.1
; Fluid Flow:631
; Fluid Flow, General:631.1
; Thermodynamics:641.1
; Heat Transfer:641.2
; Mathematics:921
; Classical Physics; Quantum Theory; Relativity:931
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:13
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/272743 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Guangdong Prov Key Lab Foundemental Turbulence Re, Ctr Complex Flows & Soft Matter Res, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Shenzhen 518055, Peoples R China |
第一作者单位 | 力学与航空航天工程系; 南方科技大学 |
通讯作者单位 | 力学与航空航天工程系; 南方科技大学 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Yuan, Zelong,Wang, Yunpeng,Xie, Chenyue,et al. Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence[J]. ACTA MECHANICA SINICA,2022,37:1773-1785.
|
APA |
Yuan, Zelong,Wang, Yunpeng,Xie, Chenyue,&Wang, Jianchun.(2022).Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence.ACTA MECHANICA SINICA,37,1773-1785.
|
MLA |
Yuan, Zelong,et al."Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence".ACTA MECHANICA SINICA 37(2022):1773-1785.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论