中文版 | English
题名

Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence

作者
通讯作者Wang, Jianchun
发表日期
2022
DOI
发表期刊
ISSN
0567-7718
EISSN
1614-3116
卷号37页码:1773-1785
摘要
We establish a deconvolutional artificial-neural-network (D-ANN) approach in large-eddy simulation (LES) of compressible turbulent flow. Filtered variables in the neighboring locations are taken as the inputs of D-ANN to recover original (unfiltered) variables, including density, momentum and pressure. The scale-similarity form is adopted to reconstruct subfilter-scale (SFS) terms. The proposed D-ANN models can give better a priori predictions of the sub-filter stress and heat flux than the classical approximate-deconvolution method (ADM) and the velocity-gradient model (VGM). The predicted SFS terms with the D-ANN models have correlation coefficients larger than 98.4% and relative errors smaller than 18%. In the a posteriori analysis, the D-ANN model compares against the implicit LES (ILES), the dynamic-Smagorinsky model (DSM), and the dynamic-mixed model (DMM). The D-ANN model predicts better than these classical models for velocity spectra, statistical properties of SFS kinetic energy flux and velocity increments. The turbulence statistics and transient velocity divergence are also accurately reconstructed. The type of explicit filter and the impact of compressibility do not significantly affect a posteriori accuracy of the D-ANN model. Results show that the proposed D-ANN approach has a great potential in developing highly accurate SFS models for large-eddy simulation of complex compressible turbulent flow.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[91952104,92052301,91752201]
WOS研究方向
Engineering ; Mechanics
WOS类目
Engineering, Mechanical ; Mechanics
WOS记录号
WOS:000745567800002
出版者
EI入藏号
20220511545319
EI主题词
Atmospheric thermodynamics ; Heat flux ; Kinetic energy ; Kinetics ; Large eddy simulation ; Machine learning ; Turbulence ; Turbulent flow ; Velocity
EI分类号
Atmospheric Properties:443.1 ; Fluid Flow:631 ; Fluid Flow, General:631.1 ; Thermodynamics:641.1 ; Heat Transfer:641.2 ; Mathematics:921 ; Classical Physics; Quantum Theory; Relativity:931
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/272743
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Guangdong Prov Key Lab Foundemental Turbulence Re, Ctr Complex Flows & Soft Matter Res, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Shenzhen 518055, Peoples R China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Yuan, Zelong,Wang, Yunpeng,Xie, Chenyue,et al. Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence[J]. ACTA MECHANICA SINICA,2022,37:1773-1785.
APA
Yuan, Zelong,Wang, Yunpeng,Xie, Chenyue,&Wang, Jianchun.(2022).Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence.ACTA MECHANICA SINICA,37,1773-1785.
MLA
Yuan, Zelong,et al."Deconvolutional artificial-neural-network framework for subfilter-scale models of compressible turbulence".ACTA MECHANICA SINICA 37(2022):1773-1785.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan, Zelong]的文章
[Wang, Yunpeng]的文章
[Xie, Chenyue]的文章
百度学术
百度学术中相似的文章
[Yuan, Zelong]的文章
[Wang, Yunpeng]的文章
[Xie, Chenyue]的文章
必应学术
必应学术中相似的文章
[Yuan, Zelong]的文章
[Wang, Yunpeng]的文章
[Xie, Chenyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。