中文版 | English
题名

Digital Rock Reconstruction with User-Defined Properties Using Conditional Generative Adversarial Networks

作者
通讯作者Zhang, Dongxiao
发表日期
2022
DOI
发表期刊
ISSN
0169-3913
EISSN
1573-1634
卷号144页码:255-281
摘要
Y Uncertainty is ubiquitous with multiphase flow in subsurface rocks due to their inherent heterogeneity and lack of in-situ measurements. To complete uncertainty analysis in a multi-scale manner, it is a prerequisite to provide sufficient rock samples. Even though the advent of digital rock technology offers opportunities to reproduce rocks, it still cannot be utilized to provide massive samples due to its high cost, thus leading to the development of diversified mathematical methods. Among them, two-point statistics (TPS) and multi-point statistics (MPS) are commonly utilized, which feature incorporating low-order and high-order statistical information, respectively. Recently, generative adversarial networks (GANs) are becoming increasingly popular since they can reproduce training images with excellent visual and consequent geologic realism. However, standard GANs can only incorporate information from data, while leaving no interface for user-defined properties, and thus may limit the representativeness of reconstructed samples. In this study, we propose conditional GANs for digital rock reconstruction, aiming to reproduce samples not only similar to the real training data, but also satisfying user-specified properties. In fact, the proposed framework can realize the targets of MPS and TPS simultaneously by incorporating high-order information directly from rock images with the GANs scheme, while preserving low-order counterparts through conditioning. We conduct three reconstruction experiments, and the results demonstrate that rock type, rock porosity, and correlation length can be successfully conditioned to affect the reconstructed rock images. The randomly reconstructed samples with specified rock type, porosity and correlation length will contribute to the subsequent research on pore-scale multiphase flow and uncertainty quantification.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738] ; China Postdoctoral Science Foundation[2020M682830]
WOS研究方向
Engineering
WOS类目
Engineering, Chemical
WOS记录号
WOS:000745573200001
出版者
EI入藏号
20220511545335
EI主题词
Generative adversarial networks ; Image reconstruction ; Multiphase flow ; Porosity ; Uncertainty analysis
EI分类号
Fluid Flow, General:631.1 ; Artificial Intelligence:723.4 ; Probability Theory:922.1 ; Physical Properties of Gases, Liquids and Solids:931.2
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/272751
专题工学院_环境科学与工程学院
作者单位
1.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zheng, Qiang,Zhang, Dongxiao. Digital Rock Reconstruction with User-Defined Properties Using Conditional Generative Adversarial Networks[J]. TRANSPORT IN POROUS MEDIA,2022,144:255-281.
APA
Zheng, Qiang,&Zhang, Dongxiao.(2022).Digital Rock Reconstruction with User-Defined Properties Using Conditional Generative Adversarial Networks.TRANSPORT IN POROUS MEDIA,144,255-281.
MLA
Zheng, Qiang,et al."Digital Rock Reconstruction with User-Defined Properties Using Conditional Generative Adversarial Networks".TRANSPORT IN POROUS MEDIA 144(2022):255-281.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Qiang]的文章
[Zhang, Dongxiao]的文章
百度学术
百度学术中相似的文章
[Zheng, Qiang]的文章
[Zhang, Dongxiao]的文章
必应学术
必应学术中相似的文章
[Zheng, Qiang]的文章
[Zhang, Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。