题名 | A space fractional constitutive equation model for non-Newtonian fluid flow |
作者 | |
通讯作者 | Sun, HongGuang |
发表日期 | 2018-09
|
DOI | |
发表期刊 | |
ISSN | 1007-5704
|
EISSN | 1878-7274
|
卷号 | 62页码:409-417 |
摘要 | Non-Newtonian fluid flow can be driven by spatially nonlocal velocity, the dynamics of which can be described by promising fractional derivative models. This study reports a left-side, Caputo type, space fractional-order constitutive equation (FCE) using a nonlocal, fractional velocity gradient and then interprets physical properties of non-Newtonian fluids for steady pipe flow. Results show that the generalized FCE model contains previous non-Newtonian fluid flow models as end-members by simply adjusting the order of the fractional index, and a preliminary test shows that the FCE model conveniently captures the observed growth of shear stress for various velocity gradients. Further analysis of the velocity profile, frictional head loss, and Reynolds number using the FCE model also leads to analytical tools and criterion that can extend standard models in quantifying the complex dynamics of non-Newtonian fluid flow with a wide range of spatially nonlocal velocities. Model extension using the general two-side fractional derivative is also briefly discussed. (c) 2018 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[11572112]
; National Natural Science Foundation of China[41628202]
; National Natural Science Foundation of China[11528205]
; National Natural Science Foundation of China[41330632]
|
WOS研究方向 | Mathematics
; Mechanics
; Physics
|
WOS类目 | Mathematics, Applied
; Mathematics, Interdisciplinary Applications
; Mechanics
; Physics, Fluids & Plasmas
; Physics, Mathematical
|
WOS记录号 | WOS:000429332800027
|
出版者 | |
EI入藏号 | 20181104896349
|
EI主题词 | Constitutive equations
; Flow measurement
; Newtonian flow
; Non Newtonian liquids
; Reynolds equation
; Reynolds number
; Rheology
; Shear flow
; Shear stress
; Velocity
; Viscous flow
|
EI分类号 | Fluid Flow, General:631.1
; Mathematics:921
; Mechanics:931.1
; Physical Properties of Gases, Liquids and Solids:931.2
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:55
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/27326 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China 2.Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA 3.Univ Wyoming, Dept Civil & Architectural Engn, 1000 E Univ Ave, Laramie, WY 82071 USA 4.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Sun, HongGuang,Zhang, Yong,Wei, Song,et al. A space fractional constitutive equation model for non-Newtonian fluid flow[J]. Communications in Nonlinear Science and Numerical Simulation,2018,62:409-417.
|
APA |
Sun, HongGuang,Zhang, Yong,Wei, Song,Zhu, Jianting,&Chen, Wen.(2018).A space fractional constitutive equation model for non-Newtonian fluid flow.Communications in Nonlinear Science and Numerical Simulation,62,409-417.
|
MLA |
Sun, HongGuang,et al."A space fractional constitutive equation model for non-Newtonian fluid flow".Communications in Nonlinear Science and Numerical Simulation 62(2018):409-417.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Sun-2018-A space fra(743KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论