中文版 | English
题名

Automatic strain sensor design via active learning and data augmentation for soft machines

作者
通讯作者Wang, Xiaonan; Chen, Po-Yen
发表日期
2022
DOI
发表期刊
EISSN
2522-5839
卷号4期号:1页码:84-94
摘要
["Emerging soft machines require high-performance strain sensors to achieve closed-loop feedback control. Machine learning is a versatile tool to uncover complex correlations between fabrication recipes and sensor performance at the device level. Here a three-stage machine learning framework was realized for a high-accuracy prediction model capable of automating the design of strain sensors. First, a support-vector machine classifier was trained by using 351 compositions of various nanomaterials. Second, through 12 active learning loops, 125 strain sensors were stagewise fabricated to enrich the multidimensional dataset. Third, to address the challenge of data scarcity, data augmentation was implemented to synthesize >10,000 virtual data points, followed by genetic algorithm-based selection to optimize the model's prediction accuracy. Several data-driven design rules for piezoresistive nanocomposites were generalized and validated by in situ microscopic studies. As final demonstrations, model-suggested strain sensors can be integrated into/onto various soft machines to endow them with real-time strain-sensing capabilities.","Piezoresistors can be used in strain sensors for soft machines, but the traditional design process relies on intuition and human ingenuity alone. Haitao Yang and colleagues present a method built on genetic algorithms and other machine learning methods to design and fabricate strain sensors with improved capabilities."]
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Singapore RIE2020 Advanced Manufacturing and Engineering Programmatic Grant 'Accelerated Materials Development for Manufacturing' by the Agency for Science, Technology and Research[A1898b0043] ; University of Maryland, College Park[2957431] ; Maryland Industrial Partnerships[6808,4311103] ; Maryland Innovation Initiative (MII) Technology Assessment Award[4308302] ; MOST-AFOSR Taiwan Topological and Nanostructured Materials Grant["FA2386-21-1-4065",5284212]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000749017100001
出版者
EI入藏号
20220511561505
EI主题词
Genetic algorithms ; Virtual addresses
EI分类号
Data Storage, Equipment and Techniques:722.1 ; Computer Software, Data Handling and Applications:723
来源库
Web of Science
引用统计
被引频次[WOS]:61
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/273756
专题工学院_电子与电气工程系
作者单位
1.Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore, Singapore
2.Singapore Univ Technol & Design, Engn Prod Dev, Singapore, Singapore
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
4.Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
5.Anhui Univ Technol, Sch Metallurg Engn, Maanshan, Peoples R China
6.Tsinghua Univ, Dept Chem Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Yang, Haitao,Li, Jiali,Lim, Kai Zhuo,et al. Automatic strain sensor design via active learning and data augmentation for soft machines[J]. NATURE MACHINE INTELLIGENCE,2022,4(1):84-94.
APA
Yang, Haitao.,Li, Jiali.,Lim, Kai Zhuo.,Pan, Chuanji.,Tien Van Truong.,...&Chen, Po-Yen.(2022).Automatic strain sensor design via active learning and data augmentation for soft machines.NATURE MACHINE INTELLIGENCE,4(1),84-94.
MLA
Yang, Haitao,et al."Automatic strain sensor design via active learning and data augmentation for soft machines".NATURE MACHINE INTELLIGENCE 4.1(2022):84-94.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Haitao]的文章
[Li, Jiali]的文章
[Lim, Kai Zhuo]的文章
百度学术
百度学术中相似的文章
[Yang, Haitao]的文章
[Li, Jiali]的文章
[Lim, Kai Zhuo]的文章
必应学术
必应学术中相似的文章
[Yang, Haitao]的文章
[Li, Jiali]的文章
[Lim, Kai Zhuo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。