题名 | Defeating traffic analysis via differential privacy: a case study on streaming traffic |
作者 | |
通讯作者 | Zhang, Yinqian |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1615-5262
|
EISSN | 1615-5270
|
卷号 | 21页码:689-706 |
摘要 | In this paper, we explore the adaption of techniques previously used in the domains of adversarial machine learning and differential privacy to mitigate the ML-powered analysis of streaming traffic. Our findings are twofold. First, constructing adversarial samples effectively confounds an adversary with a predetermined classifier but is less effective when the adversary can adapt to the defense by using alternative classifiers or training the classifier with adversarial samples. Second, differential-privacy guarantees are very effective against such statistical-inference-based traffic analysis, while remaining agnostic to the machine learning classifiers used by the adversary. We propose three mechanisms for enforcing differential privacy for encrypted streaming traffic and evaluate their security and utility. Our empirical implementation and evaluation suggest that the proposed statistical privacy approaches are promising solutions in the underlying scenarios |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | NSF[1718084,1750809,1801494,
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000749038400001
|
出版者 | |
EI入藏号 | 20220511582934
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/273832 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Ohio State Univ, Columbus, OH 43210 USA 2.Tulane Univ, New Orleans, LA 70118 USA 3.Duke Univ, Durham, NC USA 4.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Guangdong, Peoples R China 5.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Xiaokuan,Hamm, Jihun,Reiter, Michael K.,et al. Defeating traffic analysis via differential privacy: a case study on streaming traffic[J]. International Journal of Information Security,2022,21:689-706.
|
APA |
Zhang, Xiaokuan,Hamm, Jihun,Reiter, Michael K.,&Zhang, Yinqian.(2022).Defeating traffic analysis via differential privacy: a case study on streaming traffic.International Journal of Information Security,21,689-706.
|
MLA |
Zhang, Xiaokuan,et al."Defeating traffic analysis via differential privacy: a case study on streaming traffic".International Journal of Information Security 21(2022):689-706.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论