中文版 | English
题名

Defeating traffic analysis via differential privacy: a case study on streaming traffic

作者
通讯作者Zhang, Yinqian
发表日期
2022
DOI
发表期刊
ISSN
1615-5262
EISSN
1615-5270
卷号21页码:689-706
摘要

In this paper, we explore the adaption of techniques previously used in the domains of adversarial machine learning and differential privacy to mitigate the ML-powered analysis of streaming traffic. Our findings are twofold. First, constructing adversarial samples effectively confounds an adversary with a predetermined classifier but is less effective when the adversary can adapt to the defense by using alternative classifiers or training the classifier with adversarial samples. Second, differential-privacy guarantees are very effective against such statistical-inference-based traffic analysis, while remaining agnostic to the machine learning classifiers used by the adversary. We propose three mechanisms for enforcing differential privacy for encrypted streaming traffic and evaluate their security and utility. Our empirical implementation and evaluation suggest that the proposed statistical privacy approaches are promising solutions in the underlying scenarios

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
NSF[1718084,1750809,1801494,
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000749038400001
出版者
EI入藏号
20220511582934
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/273832
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Ohio State Univ, Columbus, OH 43210 USA
2.Tulane Univ, New Orleans, LA 70118 USA
3.Duke Univ, Durham, NC USA
4.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Guangdong, Peoples R China
5.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
通讯作者单位南方科技大学;  计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Xiaokuan,Hamm, Jihun,Reiter, Michael K.,et al. Defeating traffic analysis via differential privacy: a case study on streaming traffic[J]. International Journal of Information Security,2022,21:689-706.
APA
Zhang, Xiaokuan,Hamm, Jihun,Reiter, Michael K.,&Zhang, Yinqian.(2022).Defeating traffic analysis via differential privacy: a case study on streaming traffic.International Journal of Information Security,21,689-706.
MLA
Zhang, Xiaokuan,et al."Defeating traffic analysis via differential privacy: a case study on streaming traffic".International Journal of Information Security 21(2022):689-706.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiaokuan]的文章
[Hamm, Jihun]的文章
[Reiter, Michael K.]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiaokuan]的文章
[Hamm, Jihun]的文章
[Reiter, Michael K.]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiaokuan]的文章
[Hamm, Jihun]的文章
[Reiter, Michael K.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。