中文版 | English
题名

New expectation-maximization-type algorithms via stochastic representation for the analysis of truncated normal data with applications in biomedicine

作者
通讯作者Zhang, Chi
发表日期
2018-08
DOI
发表期刊
ISSN
0962-2802
EISSN
1477-0334
卷号27期号:8页码:2459-2477
摘要
To analyze univariate truncated normal data, in this paper, we stochastically represent the normal random variable as a mixture of a truncated normal random variable and its complementary random variable. This stochastic representation is a new idea and it is the first time to appear in literature. According to this stochastic representation, we derive important distributional properties for the truncated normal distribution and develop two new expectation-maximization algorithms to calculate the maximum likelihood estimates of parameters of interest for Type I data (without and with covariates) and Type II/III data. Bootstrap confidence intervals of parameters for small sample sizes are provided. To evaluate the performance of the proposed methods for the truncated normal distribution, in simulation studies, we first focus on the comparison of estimation results between including the unobserved data counts and excluding the unobserved data counts, and we next investigate the impact of the number of unobserved data on the estimation results. The plasma ferritin concentration data collected by Australian Institute of Sport and the blood fat content data are used to illustrate the proposed methods and to compare the truncated normal distribution with the half normal, the folded normal, and the folded normal slash distributions based on Akaike information criterion and Bayesian information criterion.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一
WOS研究方向
Health Care Sciences & Services ; Mathematical & Computational Biology ; Medical Informatics ; Mathematics
WOS类目
Health Care Sciences & Services ; Mathematical & Computational Biology ; Medical Informatics ; Statistics & Probability
WOS记录号
WOS:000438616300016
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/27432
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
2.Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
第一作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Tian, Guo-Liang,Ju, Da,Yuen, Kam Chuen,et al. New expectation-maximization-type algorithms via stochastic representation for the analysis of truncated normal data with applications in biomedicine[J]. STATISTICAL METHODS IN MEDICAL RESEARCH,2018,27(8):2459-2477.
APA
Tian, Guo-Liang,Ju, Da,Yuen, Kam Chuen,&Zhang, Chi.(2018).New expectation-maximization-type algorithms via stochastic representation for the analysis of truncated normal data with applications in biomedicine.STATISTICAL METHODS IN MEDICAL RESEARCH,27(8),2459-2477.
MLA
Tian, Guo-Liang,et al."New expectation-maximization-type algorithms via stochastic representation for the analysis of truncated normal data with applications in biomedicine".STATISTICAL METHODS IN MEDICAL RESEARCH 27.8(2018):2459-2477.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tian, Guo-Liang]的文章
[Ju, Da]的文章
[Yuen, Kam Chuen]的文章
百度学术
百度学术中相似的文章
[Tian, Guo-Liang]的文章
[Ju, Da]的文章
[Yuen, Kam Chuen]的文章
必应学术
必应学术中相似的文章
[Tian, Guo-Liang]的文章
[Ju, Da]的文章
[Yuen, Kam Chuen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。